当前位置: 首页 > news >正文

【线性代数】【二】2.7 矩阵的秩

文章目录

  • 前言
  • 一、向量组的秩
  • 二、矩阵的秩
  • 三、矩阵的可逆性与秩
  • 总结


前言

在前面的内容中,我们已经陆陆续续地给出了秩的概念。本文可以看成是对以往概念与性质的总结,那专门针对秩进行分析。


一、向量组的秩

在笔记2.2中,我们学习了极大线性无关组的概念。现在,我们给出向量组的秩定义:一组向量的秩表示该组向量的极大线性无关组的向量数量。结合向量空间的维数定义,可知由该组向量张成的向量空间的维数等于秩。

当我们往向量组中添加线性无关的向量时,秩也会增加。但是我们可以一直重复这个过程来增加秩吗?换言之,我们总能找到一个向量,与原向量组线性无关吗?

答案当然是否定的。 n n n维向量组成的一组向量,其秩的上界为 n n n。因为 n n n维空间中任意n个线性无关的向量构成该空间的一组基。因此当增加到大于 n n n个向量时,新增加的向量一定可以被之前 n n n个向量线性表示。

二、矩阵的秩

矩阵的秩即为矩阵列向量组的秩,也等于矩阵行向量组的秩,也等于其化为行最简矩阵时主元的数量。下面,我们分析几种常见操作对矩阵秩的影响。

1)乘上一个矩阵

r ( A B ) ⩽ r ( A ) r(\bm{AB})\leqslant r(\bm{A}) r(AB)r(A)

这个性质在笔记2.6中已有说明,即 A B \bm{AB} AB的列向量为 A \bm{A} A的列向量的线性组合,而线性组合得到的向量与原向量组是线性相关的,因此无法增加线性无关的列向量数量。当 B \bm{B} B为可逆矩阵时,等号一定成立,证明可见笔记2.6。

2)加上一个矩阵

r ( A + B ) ⩽ r ( A ) + r ( B ) r(\bm{A}+\bm{B})\leqslant r(\bm{A})+r(\bm{B}) r(A+B)r(A)+r(B)

矩阵相加,相当于将两个矩阵的列向量做了一个简单的线性组合,同样的,线性组合无法增加与两原矩阵的列向量线性无关的向量。

3)增广矩阵

r ( A + B ) ⩽ r ( [ A , B ] ) ⩽ r ( A ) + r ( B ) r(\bm{A}+\bm{B})\leqslant r([\bm{A,B}])\leqslant r(\bm{A})+r(\bm{B}) r(A+B)r([A,B])r(A)+r(B)

矩阵相加即对增广矩阵列向量进行线性组合,因此秩小于等于增广矩阵。增广矩阵的增加的线性无关列向量不会超过 r ( B ) r(\bm{B}) r(B)

max ⁡ { r ( A ) , r ( B ) } ⩽ r ( [ A , B ] ) \max\{r(\bm{A}),r(\bm{B})\}\leqslant r([\bm{A,B}]) max{r(A),r(B)}r([A,B])

增广矩阵不会使得原本线性无关的向量变成线性相关,因此不会减少秩。

三、矩阵的可逆性与秩

因为矩阵的秩等于行最简的主元数,而n阶可逆矩阵的行等价于n阶单位矩阵,即主元素等于n。因此,方阵的秩等于列数时必然可逆。

至此,我们得到了一组等价关系:

n阶方阵可逆 ⟺ \iff 行等价于n阶单位阵 ⟺ \iff 秩等于n ⟺ \iff 零空间维度为0,齐次方程组只有零解 ⟺ \iff 矩阵的列(行)向量均线性无关


总结

之前虽然已经提到秩的定义并推导了一些性质,但还不够全面。本文可以算是对矩阵的秩的一点简单的查缺补漏吧。

相关文章:

【线性代数】【二】2.7 矩阵的秩

文章目录 前言一、向量组的秩二、矩阵的秩三、矩阵的可逆性与秩总结 前言 在前面的内容中,我们已经陆陆续续地给出了秩的概念。本文可以看成是对以往概念与性质的总结,那专门针对秩进行分析。 一、向量组的秩 在笔记2.2中,我们学习了极大线…...

计算机网络部分基础知识

网络协议的意义 单台主机内部的设备之间需要发送和接收消息,那么和相隔很远的两台主机之间发送消息有什么区别呢?两台主机通过网络发送消息,相当于两个网卡设备之间进行通信,最大的区别在于距离变长了。而距离变长带来的结果就是&…...

WESWOO合作的出海企业(一)

分享一些我们在shopify开发上合作的品牌介绍1. **韶音科技(SHOKZ)**: - WESWOO为韶音科技设计了多个产品页面,如OPENFIT、OPENSWIMPRO等,这些页面展示了产品特点、滑动特效、比较功能等,并通过品牌VI统一&a…...

vue 项目中 使用vxe-grid 表格中给表格的表头设置特殊的格式 , 并且给指定的列文字设置颜色

项目场景: 相关背景: vue 项目中 使用vxe-grid 表格中给表格的表头设置特殊的格式,并为指定的列文字设置颜色 实现方案: 具体实现方法及步骤: 一、给表格的表头设置特殊的格式 实现方式一: :header-row-s…...

基于SpringBoot的企业资产管理系统

TOC springboot117基于SpringBoot的企业资产管理系统 系统概述 1.1 研究背景 智慧养老是面向居家老人、社区及养老机构的传感网系统与信息平台,并在此基础上提供实时、快捷、高效、低成本的,物联化、互联化、智能化的养老服务。 随着科技进步&#…...

ps快捷键,学习

ps快捷键图片变的特别大,归位,ctrl0背景图层锁住 选中图层,点击顶部图层,新建,背景图层,确定,就解开了,想在锁住,在点一次...

python代码模拟服务器实验2:IO多路复用select

实验代码的环境是在windows,和linux是有差别的 在Windows系统上,select模块需要传递特定的对象类型,而不是文件描述符。在Unix-like系统上,文件描述符是一个整数,而在Windows上,select期望得到的是socket对…...

修改ubuntu的终端显示语言为英文,界面保持为中文

修改ubuntu的终端显示语言为英文,界面保持为中文 sudo nano /etc/default/locale LANGzh_CN.UTF-8nano ~/.bashrc 在文件未尾加入下列两行 export LANGen_US.UTF-8 export LANGUAGEen在终端执行 source ~/.bashrc之后提示语言就变成英文了...

重塑园区生态,引领产业智慧化新飞跃

中服云智慧园区平台基于工业物联网平台,在园区场景中集中运用云计算、物联网、大数据、人工智能、数字孪生、边缘计算等新一代信息技术。秉承产业主导、业务主导、效率主导的理念,通过一体化子系统集成、智慧化业务管理、可视化运营分析、人性化客户服务…...

WSL 忘记ubuntu的密码

文章目录 1. 以管理员身份打开 PowerShel2.输入命令 wsl.exe -d Ubuntu-20.04 --user root3.输入命令 passwd username 修改用户密码,username即待重置的用户的名称 1. 以管理员身份打开 PowerShel 2.输入命令 wsl.exe -d Ubuntu-20.04 --user root 注意版本号是自…...

github项目-创建一个新分支

在远程仓库创建一个分支实际上是在本地创建一个分支,然后将该分支推送到远程仓库。这是因为在 Git 中,您不能直接在远程仓库创建分支,而需要先在本地创建分支,然后将该分支推送到远程仓库。 以下是创建并推送新分支到远程仓库的步…...

Java设计模式中介者模式的优势与局限性分析

Java设计模式中介者模式的优势与局限性分析 一、引言 在软件工程中,设计模式是一种经过验证的解决方案,用于解决软件开发中常见的问题。设计模式的使用可以提高代码的复用性、可维护性和可扩展性。中介者模式(Mediator Pattern)…...

一、软件工程概述

软件工程概述 1. 软件的概念和特点2. 软件危机的产生3. 软件工程的概念和发展过程4. 软件工程知识体系与职业道德 1. 软件的概念和特点 软件定义 软件程序数据文档。 软件生存周期 问题定义:要解决的问题是什么?可行性分析:对于上阶段所确定…...

第六天:java设计模式、GUI编程与面向对象设计原则

第六天:设计模式、GUI编程与面向对象设计原则 1. 设计模式概述 设计模式的定义:回顾设计模式的定义,即解决特定设计问题的通用解决方案。常见设计模式:了解并掌握几种常见的设计模式,如单例模式、工厂模式、策略模式…...

解读RPA自动化流程机器人

RPA全称Robotic Process Automation,即机器人流程自动化,基于人工智能和自动化技术,能够将大量重复、规则明确的日常事务操作实现自动化处理,通常被形象地称为“数字员工”。本文金智维将深入探讨RPA的主要价值和应用领域&#xf…...

Redis17-服务端优化

目录 持久化配置 慢查询 什么是慢查询 如何查看慢查询 命令及安全配置 内存配置 集群优化 持久化配置 Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议: 用来做缓存的Redis实例尽量不要开启持…...

Web语义化及实际应用

你好同学,我是沐爸,欢迎点赞、收藏和关注!今天一起了解下Web语义化及其应用吧! 是什么? 使用合适的标签、属性,让页面能“说话“,让人和机器都能快速理解网页内容。 为什么? 有…...

Linux系统调试课:CPUFreq 中央处理器频率调节技术

文章目录 一、CPUFreq组成二、用户接口三、设备树配置沉淀、分享、成长,让自己和他人都能有所收获!😄 📢中央处理器频率调节(Central Processing Unit frequency,CPUFreq)技术可以降低ARM芯片的功耗,例如在系统对任务压力较小时,通过调整处理器工作频率与输入电压的…...

C++之模版初阶

目录 前言 1.泛型编程 2.函数模版 2.1函数模版概念 2.2函数模版格式 2.3函数模版的原理 2.4函数模版的实例化 2.5模版参数的匹配原则 3.类模版 3.1类模版的定义格式 3.2类模版的实例化 结束语 前言 前面我们学习了C的类与对象和内存管理,接下来我们继续学习…...

飞桨paddle API函数scatter详解

飞桨的scatter函数,是通过基于 updates 来更新选定索引 index 上的输入来获得输出,具体官网api文档见: scatter-API文档-PaddlePaddle深度学习平台 官网给的例子如下: >>> import paddle>>> x paddle.to_tens…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

XCTF-web-easyupload

试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...