当前位置: 首页 > news >正文

Polars简明基础教程十一:可视化(一)

到本次讲座结束时,你将能够:

  • 使用Polars的内部plot方法从Polars创建图表
  • 使用外部绘图库从Polars创建图表
  • 了解这些库如何支持Polars

通常,需要可视化库的最新版本来实现最大程度的兼容性

import polars as plimport hvplot as hv
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import altair as alt
import vegafusion as vf

为Altair启用vegafusion

解释:

  1. Altair 是一个基于 Python 的声明式统计可视化库。它允许你用简洁的语法创建复杂的交互式图表。Altair 生成的图表基于 Vega-Lite 规范,这是一种用于描述数据可视化的 JSON 格式。
  2. Vegafusion 是一个优化工具,旨在加速 Altair 图表的渲染速度,特别是在处理大数据集时。它通过在服务器端执行更多的数据处理和渲染工作,从而减轻客户端浏览器的负担,使图表响应更快、更流畅。

在使用 Altair 进行数据可视化时,我们一般要激活或配置 Vegafusion 来优化图表的性能。具体来说,这意味着当你在 Polars 或其他环境中使用 Altair 创建图表时,Vegafusion 会在后台工作,确保图表加载速度快,即使数据量很大也能保持良好的用户体验。

vf.enable() # 启用vegafusioncsv_file = '../data/titanic.csv'
df = pl.read_csv(csv_file)
df.head(3)shape: (3, 15)
┌──────────┬────────┬────────┬──────┬───┬──────┬─────────────┬───────┬───────┐
│ survived ┆ pclass ┆ sex    ┆ age  ┆ … ┆ deck ┆ embark_town ┆ alive ┆ alone │
│ ---      ┆ ---    ┆ ---    ┆ ---  ┆   ┆ ---  ┆ ---         ┆ ---   ┆ ---   │
│ i64      ┆ i64    ┆ str    ┆ f64  ┆   ┆ str  ┆ str         ┆ str   ┆ bool  │
╞══════════╪════════╪════════╪══════╪═══╪══════╪═════════════╪═══════╪═══════╡
│ 0        ┆ 3      ┆ male   ┆ 22.0 ┆ … ┆ null ┆ Southampton ┆ no    ┆ false │
│ 1        ┆ 1      ┆ female ┆ 38.0 ┆ … ┆ C    ┆ Cherbourg   ┆ yes   ┆ false │
│ 1        ┆ 3      ┆ female ┆ 26.0 ┆ … ┆ null ┆ Southampton ┆ yes   ┆ true  │
└──────────┴────────┴────────┴──────┴───┴──────┴─────────────┴───────┴───────┘

我们首先通过创建一个简单的条形图来查看是否可以直接将Polars的DataFrame传递给每个绘图库。接下来,我们将考虑从Polars与每个库协作时需要注意的其他一些要点。

条形图

我们首先统计每个乘客等级中的乘客数量。有关此处使用的方法的更多信息,请参阅课程中关于统计和聚合的部分。

passenger_class_counts_df = (df['pclass'].value_counts().sort("pclass")
)passenger_class_counts_dfshape: (3, 2)
┌────────┬───────┐
│ pclass ┆ count │
│ ---    ┆ ---   │
│ i64    ┆ u32   │
╞════════╪═══════╡
│ 1      ┆ 216   │
│ 2      ┆ 184   │
│ 3      ┆ 491   │
└────────┴───────┘

使用hvPlot内置绘图

DataFrame有一个内置的.plot方法,该方法将DataFrame传递给hvPlot库

注释:

Polars 数据库框架直接集成了 hvPlot 这个绘图工具,使得用户可以直接在 Polars 的 DataFrame 上进行数据可视化,而无需额外安装或导入其他专门的绘图库(尽管 hvPlot 本身仍需要被安装)。

hvPlot 是一个用于快速生成高质量图表的 Python 库,它构建在 HoloViews 和 Bokeh 之上,提供了非常直观的 API,使得从数据帧到图表的转换变得简单且强大。它支持多种数据源,包括 Pandas DataFrame 和 Series。

在 Polars 中,hvPlot 的功能已经被内化了,用户可以直接在 Polars DataFrame 上调用 hvPlot 的方法来创建图表,无需像以前那样先将数据转换为 Pandas DataFrame 或者单独使用 hvPlot 的函数。

passenger_class_counts_df.plot.bar(x="pclass",y="count"
)

hvPlot 是对底层绘图库的封装。默认情况下,它使用 Bokeh 库来生成交互式图表,这些图表在右侧包含控件,可以:

  •  在我们悬停在数据上时添加描述数据的工具提示
  • 支持平移和缩放
  • 有一个重置按钮以恢复到原始视图 

在 JupyterLab 中,图表会自动显示。但如果你在使用 IPython 终端,hvPlot 也可以启动一个临时服务器,在浏览器中显示图表,只要你:

  •  首先创建一个图表对象并将其分配给变量 p
  • 调用 hv.show(p) 
p = (passenger_class_counts_df.plot.bar(x="pclass",y="count"))hv.show(p)

在这个例子中,我们根据乘客等级(pclass)的颜色进行散点图绘制,以年龄(age)为横坐标,票价(fare)为纵坐标,并控制图表的宽度。

p = (df.plot.scatter(x="age",y="fare",color="pclass",    width=500)
)hv.show(p)

然而,用于 pclass 的颜色映射并不是很有用,因为它将 pclass 的整数视为连续数值而不是离散的分类值(这是不同绘图库中常见的现象)。

在绘图之前,我们将 pclass 转换为字符串,以获得更好的颜色映射。

p = (df.with_columns(pl.col("pclass").cast(pl.Utf8)).plot.scatter(x="age",y="fare",color="pclass",    )
)hv.show(p)

我们可以使用 cmap 参数明确控制所使用的颜色映射。可用的颜色映射设置在这里:

https://holoviews.org/user_guide/Colormaps.html

请注意,您选择的颜色映射必须与您正在使用的 hvPlot 绘图后端(默认为 Bokeh)相匹配。

Polars简明基础教程系列

Polars简明基础教程十二:可视化(二)

Polars简明基础教程十一:可视化(一)

Polars简明基础教程十:Numpy和Pandas的相互转换(2)

Polars简明基础教程九:Numpy和Pandas的相互转换(1)

Polars简明基础教程八:Series 和 DataFrame 以及它们之间的转换_B

Polars简明基础教程七:Series 和 DataFrame 以及它们之间的转换_A

Polars简明基础教程六:什么是Polars的“DataFrame(数据框)_下”

Polars简明基础教程五:什么是Polars的“DataFrame(数据框)_上”

Polars简明基础教程四:懒惰模式 2:评估查询

Polars简明基础教程三:懒惰模式 1:引入懒惰模式(续)

Polars简明基础教程二:懒惰模式 1:引入懒惰模式

Polars简明基础教程一:Polars快速入门

相关文章:

Polars简明基础教程十一:可视化(一)

到本次讲座结束时,你将能够: 使用Polars的内部plot方法从Polars创建图表使用外部绘图库从Polars创建图表了解这些库如何支持Polars 通常,需要可视化库的最新版本来实现最大程度的兼容性 import polars as plimport hvplot as hv import ma…...

实战项目:贪吃蛇游戏的实现(上)

前言 Hello, 今天我们来一起完成一个实战项目:贪吃蛇。 相信大家都不会对这个游戏感到陌生,贪吃蛇游戏是久负盛名的游戏,他和俄罗斯方块,扫雷游戏等游戏位列世界经典游戏之列。这次我们旨在通过实战项目贪吃蛇的实现&#xff0c…...

SHT30温湿度传感器全解析——概况,性能,MCU连接,样例代码

常见温湿度传感器测量范围:(价格仅供参考,具体性能要看折线图) 型号DHT11DHT20AHT10AHT20AHT30SHT20价格¥ 2.49¥3.04¥ 1.9¥1.4¥ 1.3¥5.5温度测量范围20—90%RH0—100%RH0—100%RH0—…...

SQL server 同环比计算模板

1、计算 月 年 季度的环比和同比 计算公式如下: 环比增长率 (本期数 - 上期数) / |上期数| 100% 同比增长率 (本期数 - 同期数) / |同期数| * 100% --- dbo.ads_erp_finance_gross_profit_actual_invoice_yoy_m…...

python发送外部请求

在Python中,服务器发送外部请求是一个常见的操作,尤其是在需要集成不同服务或API时。有多种库可以帮助你完成这项任务,但最流行和广泛使用的库之一是requests。以下是如何使用requests库在Python服务器中发送外部请求的基本步骤: …...

c++并发编程面试题

1. C中lock_guard和unique_lock的区别? 在C中,lock_guard和unique_lock都是用于管理互斥锁的类,它们提供了一种 RAII(Resource Acquisition Is Initialization)机制来确保锁在作用域结束时自动释放。尽管它们的目的相…...

K8S上安装LongHorn(分布式块存储) --use

要在 Kubernetes上安装 LongHorn,您可以按照以下步骤进行操作: 准备工作 参考 官网教程将LongHorn只部署在k8s-worker5节点上。https://github.com/longhorn/longhorn 安装要求 Each node in the Kubernetes cluster where Longhorn is installed must f…...

2024年前端技术发展趋势分析

2024年的前端技术发展趋势继续受到快速变化的技术环境和不断增长的用户期望的影响。以下是2024年前端技术发展的几个关键趋势: 1. Web 组件和自定义元素 Web 组件技术(包括 Shadow DOM、HTML Templates 和 Custom Elements)正在成为构建可重…...

spring boot 笔记大杂烩

一,springboot项目创建 springboot创建时idea会打开start.spring.io失败报错 可以手动打开这个页面,然后选择maven项目,然后修改group和name名然后添加依赖web,然后生成项目包,解压缩后用idea打开就能用了 运行后报错…...

如何在香港云服务器上优化网站性能?

在香港云服务器上优化网站性能可以通过以下几种方式进行,确保用户从全球各地访问时获得快速、稳定的体验: 1. 使用内容分发网络 (CDN) 优势:CDN可以将静态内容(如图像、视频、CSS、JavaScript文件)缓存到全球多个节点…...

STM32低功耗与备用备份区域

STM的备份备用区域其实就是两个区块:BKP和RTC。低功耗则其实是STM32四种模式中的三种耗能很低的模式。 目录 一:备用区域 1.BKP 2.RTC 二:低功耗模式 1.睡眠模式: 2.停机模式: 3.待机模式: 一&…...

武汉某汽配公司携手三品软件 共绘PLM项目新蓝图

近日,三品软件与武汉某汽配公司达成战略合作,双方将共同启动PLM项目,以助力该公司在汽车制造业的研发管理领域实现全面升级。 客户简介 该公司自2008年成立以来,一直专注于为汽车制造业提供自动化输送系统、车辆装配的合装技术和…...

uniapp多图上传uni.chooseImage上传照片uni.uploadFile,默认上传9张图

uniapp多图上传uni.chooseImage上传照片uni.uploadFile 代码示例: /**上传照片 多图*/getImage() {uni.chooseImage({count: 9, //默认9sizeType: [original, compressed], //可以指定是原图还是压缩图,默认二者都有sourceType: [album], //从相册选择/…...

MySQL——内置函数

时间函数 select * from msg where date_add(sendtime, interval 2 minute) > now(); 理解: ------------------------------|-----------|-------------|------------------ 初始时间 now() 初始时间2min 字符串 length函数返回字符串长度,以字节为…...

2024年最新版小程序云开发数据模型的开通步骤,支持可视化数据库管理,支持Mysql和NoSql数据库,可以在vue3前端web里调用操作

小程序官方又改版了,搞得石头哥不得不紧急的再新出一版,教大家开通最新版的数据模型。官方既然主推数据模型,那我们就先看看看新版的数据模型到底是什么。 一,什么是数据模型 数据模型是什么 数据模型是一个用于组织和管理数据的…...

智慧水库大坝安全监测预警系统解决方案

前言 水库大坝作为重要的水利设施,承载着防洪涝、灌溉、发电等功能,关系着无数人的生命财产安全,一旦发生意外事故,后果将不堪设想,因此需要建立一套水库大坝安全监测预警系统解决方案。 系统概述 水库大坝安全监测…...

基于SpringBoot+VUE的社区团购系统(源码+文档+部署)

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等 业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写…...

LeetCode 3151. 特殊数组 I【数组】简单【Py3,C++,Java,GO,Rust】

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

超级字符串技能:提升你的编码游戏

嘿嘿,uu们,今天咱们来详解字符函数与字符串函数,好啦,废话不多讲,开干! 1.:字符分类函数 C语言中又一系列的函数是专门做字符分类的,也就是一个字符属于什么类型的字符的,这些函数的使用需要包含头文件ctype.h 这些函数的使用方法都十分类似,博主在这里就举两到三个…...

米联客-FPGA程序设计Verilog语法入门篇连载-16 Verilog语法_时钟分频设计

软件版本:无 操作系统:WIN10 64bit 硬件平台:适用所有系列FPGA 板卡获取平台:https://milianke.tmall.com/ 登录“米联客”FPGA社区 http://www.uisrc.com 视频课程、答疑解惑! 1概述 本小节讲解Verilog语法的时钟…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)

旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据&#xff01;该数据集源自2025年4月发表于《地理学报》的论文成果…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...