当前位置: 首页 > news >正文

情感分类代码

在进行自然语言处理中的情感分类时,通常需要准备以下几方面的内容:

1. **数据集**:高质量的标注数据集是关键,包括正面、负面和中性情感标记的文本。

2. **情感词典**:可用的情感词典,如SentiWordNet,用于词汇级情感分析。

3. **特征工程工具**:用于特征提取的工具和库,如NLTK、spaCy等。

4. **模型选择**:选择适合的机器学习或深度学习模型,如逻辑回归、SVM、LSTM等。

5. **计算资源**:足够的计算资源用于训练和测试模型,特别是深度学习模型。

6. **评估标准**:确定模型评估的标准和指标,如准确率、召回率、F1分数等。

当然!下面是一个使用Python进行情感分类的示例,基于`scikit-learn`库中的`TfidfVectorizer`和`LogisticRegression`模型。此代码适用于较小的数据集,但可以扩展到更复杂的模型和数据集。

### 安装必要的库

```bash

pip install numpy pandas scikit-learn

```

### 示例代码

```python

import numpy as np

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, classification_report

# 示例数据

data = {

    'text': [

        'I love this product, it is fantastic!',

        'I am very unhappy with the service.',

        'The quality is great and worth the price.',

        'I will never buy this again, very disappointing.',

        'Absolutely wonderful experience, highly recommend!',

        'The worst purchase I have ever made.'

    ],

    'label': ['positive', 'negative', 'positive', 'negative', 'positive', 'negative']

}

# 创建DataFrame

df = pd.DataFrame(data)

# 文本预处理和特征提取

vectorizer = TfidfVectorizer(stop_words='english')

X = vectorizer.fit_transform(df['text'])

y = df['label']

# 划分数据集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 训练模型

model = LogisticRegression(max_iter=1000)

model.fit(X_train, y_train)

# 预测和评估

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f'Accuracy: {accuracy:.4f}')

print('Classification Report:')

print(classification_report(y_test, y_pred))

```

### 代码解释

1. **数据准备**:

   - 创建一个示例数据集,包括文本和对应的情感标签。

2. **文本预处理**:

   - 使用`TfidfVectorizer`将文本数据转换为TF-IDF特征矩阵,并去除英文停用词。

3. **模型训练和评估**:

   - 使用`LogisticRegression`进行情感分类模型的训练,并在测试集上进行预测。

   - 评估模型性能,输出准确率和分类报告。

### 扩展

你可以将`data`替换为自己的数据集,并调整`TfidfVectorizer`参数或模型选择以优化性能。如果处理大规模数据集,可以考虑使用`Pipeline`和`GridSearchCV`进行模型调优。

相关文章:

情感分类代码

在进行自然语言处理中的情感分类时,通常需要准备以下几方面的内容: 1. **数据集**:高质量的标注数据集是关键,包括正面、负面和中性情感标记的文本。 2. **情感词典**:可用的情感词典,如SentiWordNet&…...

WPF—常用控件、属性、事件、详细介绍

WPF—常用控件、属性、事件、详细介绍 WPF(Windows Presentation Foundation)是微软推出的基于Windows 的用户界面框架,属于.NET Framework 3.0的一部分。它提供了统一的编程模型、语言和框架,真正做到了分离界面设计人员与开发人…...

Oracle遭遇bug导致共享内存无法分配报ORA-04031错误

1.故障描述 在7月17日上午11时左右,收到告警短信,提示集群节点2宕机,当即登陆该节点进行查看,发现数据库状态正常。但日志里出现大量的ORA-04031报错,提示无法分配shared_pool,当时手动执行shared pool刷新…...

SAP BRIM用于应收账款AR收入中台

SAP BRIM(Billing and Revenue Innovation Management)是SAP提供的一个综合性解决方案,旨在帮助企业高效管理计费和收入流程。它与SAP ERP系统集成,提供端到端的功能,简化计费流程,自动化收入确认&#xff…...

LVS原理简介

LVS是Linux virtual server的缩写,为linux虚拟服务器,是一个虚拟的服务器集群系统。LVS简单工作原理为用户请求LVS VIP,LVS根据转发方式和算法,将请求转发给后端服务器,后端服务器接收到请求,返回给用户。对…...

Qt五大核心特性之元对象系统

前言 Qt 的元对象系统(Meta-Object System)是 Qt 框架的核心之一,提供了一些 C 原生不具备的功能(因为在C它们是静态的),如反射、信号槽机制、属性系统等。通过这个系统,Qt 实现了许多强大的功能,这使得它…...

开放式耳机伤耳朵吗?开放式耳机在一定程度上保护我们的耳朵

开放式耳机通常被认为对耳朵的伤害较小,因为它们不需要插入耳道,从而减少了耳道内的压力和潜在的感染风险。与传统入耳式耳机相比,开放式耳机允许耳朵自然通风,减少耳道内的湿气和热量积聚,这有助于保持耳朵的健康。 然…...

JAVA打车小程序APP打车顺风车滴滴车跑腿源码微信小程序打车系统源码

🚗💨打车、顺风车、滴滴车&跑腿系统,一键解决出行生活难题! 一、出行新选择,打车从此不再难 忙碌的生活节奏,让我们常常需要快速、便捷的出行方式。打车、顺风车、滴滴车系统,正是为了满足…...

批量智慧:揭秘机器学习中的批量大小

标题:批量智慧:揭秘机器学习中的批量大小 机器学习是人工智能的一个分支,它使得计算机能够从数据中学习并做出决策或预测。在机器学习的过程中,批量大小(Batch Size)是一个至关重要的超参数,它…...

苹果Vision Pro生态发展:现状、挑战与未来展望

苹果公司以其创新技术和强大的生态系统闻名于世。在最近的财报会议上,CEO蒂姆库克分享了Vision Pro平台的最新进展,引发了业界的广泛关注。本文将深入探讨Vision Pro生态的现状、面临的挑战以及与其他XR平台的对比分析。 一、Vision Pro生态现状 据库克介绍,Vision Pro平台…...

湖南第一师范学院来访炼石,推动密码与数据安全合作

2024年8月11日,为进一步加强交流与合作,深入探讨校企产学研合作,湖南第一师范学院计算机学院院长杨恒伏一行莅临炼石调研指导。湖南第一师范学院计算机学院院长杨恒伏、网络空间安全系主任周聪等专家领导出席。炼石网络创始人兼CEO白小勇对湖…...

全面解析ETL:数据仓库架构中的关键处理过程

目录 一、数据仓库架构中的ETL 二、数据抽取 (1)逻辑抽取 (2)物理抽取 (3)变化数据捕获 三、数据转换 四、数据装载 (1)提高装载效率 (2)处理装载失败 五、ET…...

keepalived的介绍与配置

Keepalived是一个轻量级别的高可用解决方案,同时也是一个免费开源的、用C编写的类似于layer3, 4 & 7(也有说法认为是layer3, 4 & 5)交换机制的软件,主要提供负载均衡和高可用服务。它自动完成检测服务器的状态、故障隔离和…...

二叉树概念与使用

文章目录 一、作用二、二叉树概念特征2.1二叉树概念补充2.1.1度2.1.2深度2.1.3若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1个结点 三、使用2.1二叉树存储,检索,插入项目 四、 二叉树检索的时间复杂度1. 普通二叉树2. 二叉搜…...

MongoDB 在 Java 中的使用教程

目录 MongoDB 简介环境准备使用 Java 连接 MongoDB基本 CRUD 操作复杂查询操作索引和性能优化事务管理总结 1. MongoDB 简介 MongoDB 是一个基于分布式文件存储的 NoSQL 数据库系统。它以文档(JSON 形式)存储数据,具有高扩展性和灵活的数据…...

微前端架构下的配置管理:策略、实现与最佳实践

微前端架构通过将一个大型前端应用拆分为多个小型、自治的子应用,提升了开发效率和应用的可维护性。然而,随着应用规模的扩大和子应用数量的增加,配置管理变得日益复杂。本文将详细介绍在微前端架构下实现应用配置管理的策略、实现方法和最佳…...

React Native中好用的UI组件库

文章目录 前言1.React Native ElementsStar数超24K地址 2.React Native UI KittenStar数超20K地址 3.NativeBaseStar数超20K地址 前言 下面是React Native中一些常用的UI库 1.React Native Elements Star数超24K 官方介绍 React Native Elements 的目标是提供一套用于在 Rea…...

WebSocket 快速入门

WebSocket是什么 WebSocket 是基于 TCP 的一种新的应用层网络协议。它实现了浏览器与服务器全双工通信,即允许服务器主动发送信息给客户端。因此,在 WebSocket 中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性…...

MySQL中的存储文件和IO机制详细解析

MySQL中的存储文件和IO机制详细解析 一、引言 MySQL作为广泛使用的关系型数据库管理系统,凭借其高性能和稳定性在各大应用中扮演了关键角色。在实际应用中,数据库需要对大量数据进行存储、检索、更新等操作。这些操作离不开底层的文件存储系统&#xf…...

复习之 java 锁

裁员在家,没有面试机会,整理整理面试知识点吧! 不得不知道的java 锁 Java 中,提供了两种方式来实现同步互斥访问(也就是锁):synchronized 和 Lock 多线程编程中,有可能会出现多个线…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

网络编程(UDP编程)

思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...