情感分类代码
在进行自然语言处理中的情感分类时,通常需要准备以下几方面的内容:
1. **数据集**:高质量的标注数据集是关键,包括正面、负面和中性情感标记的文本。
2. **情感词典**:可用的情感词典,如SentiWordNet,用于词汇级情感分析。
3. **特征工程工具**:用于特征提取的工具和库,如NLTK、spaCy等。
4. **模型选择**:选择适合的机器学习或深度学习模型,如逻辑回归、SVM、LSTM等。
5. **计算资源**:足够的计算资源用于训练和测试模型,特别是深度学习模型。
6. **评估标准**:确定模型评估的标准和指标,如准确率、召回率、F1分数等。
当然!下面是一个使用Python进行情感分类的示例,基于`scikit-learn`库中的`TfidfVectorizer`和`LogisticRegression`模型。此代码适用于较小的数据集,但可以扩展到更复杂的模型和数据集。
### 安装必要的库
```bash
pip install numpy pandas scikit-learn
```
### 示例代码
```python
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
# 示例数据
data = {
'text': [
'I love this product, it is fantastic!',
'I am very unhappy with the service.',
'The quality is great and worth the price.',
'I will never buy this again, very disappointing.',
'Absolutely wonderful experience, highly recommend!',
'The worst purchase I have ever made.'
],
'label': ['positive', 'negative', 'positive', 'negative', 'positive', 'negative']
}
# 创建DataFrame
df = pd.DataFrame(data)
# 文本预处理和特征提取
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(df['text'])
y = df['label']
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 训练模型
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
# 预测和评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.4f}')
print('Classification Report:')
print(classification_report(y_test, y_pred))
```
### 代码解释
1. **数据准备**:
- 创建一个示例数据集,包括文本和对应的情感标签。
2. **文本预处理**:
- 使用`TfidfVectorizer`将文本数据转换为TF-IDF特征矩阵,并去除英文停用词。
3. **模型训练和评估**:
- 使用`LogisticRegression`进行情感分类模型的训练,并在测试集上进行预测。
- 评估模型性能,输出准确率和分类报告。
### 扩展
你可以将`data`替换为自己的数据集,并调整`TfidfVectorizer`参数或模型选择以优化性能。如果处理大规模数据集,可以考虑使用`Pipeline`和`GridSearchCV`进行模型调优。
相关文章:
情感分类代码
在进行自然语言处理中的情感分类时,通常需要准备以下几方面的内容: 1. **数据集**:高质量的标注数据集是关键,包括正面、负面和中性情感标记的文本。 2. **情感词典**:可用的情感词典,如SentiWordNet&…...
WPF—常用控件、属性、事件、详细介绍
WPF—常用控件、属性、事件、详细介绍 WPF(Windows Presentation Foundation)是微软推出的基于Windows 的用户界面框架,属于.NET Framework 3.0的一部分。它提供了统一的编程模型、语言和框架,真正做到了分离界面设计人员与开发人…...
Oracle遭遇bug导致共享内存无法分配报ORA-04031错误
1.故障描述 在7月17日上午11时左右,收到告警短信,提示集群节点2宕机,当即登陆该节点进行查看,发现数据库状态正常。但日志里出现大量的ORA-04031报错,提示无法分配shared_pool,当时手动执行shared pool刷新…...
SAP BRIM用于应收账款AR收入中台
SAP BRIM(Billing and Revenue Innovation Management)是SAP提供的一个综合性解决方案,旨在帮助企业高效管理计费和收入流程。它与SAP ERP系统集成,提供端到端的功能,简化计费流程,自动化收入确认ÿ…...
LVS原理简介
LVS是Linux virtual server的缩写,为linux虚拟服务器,是一个虚拟的服务器集群系统。LVS简单工作原理为用户请求LVS VIP,LVS根据转发方式和算法,将请求转发给后端服务器,后端服务器接收到请求,返回给用户。对…...
Qt五大核心特性之元对象系统
前言 Qt 的元对象系统(Meta-Object System)是 Qt 框架的核心之一,提供了一些 C 原生不具备的功能(因为在C它们是静态的),如反射、信号槽机制、属性系统等。通过这个系统,Qt 实现了许多强大的功能,这使得它…...
开放式耳机伤耳朵吗?开放式耳机在一定程度上保护我们的耳朵
开放式耳机通常被认为对耳朵的伤害较小,因为它们不需要插入耳道,从而减少了耳道内的压力和潜在的感染风险。与传统入耳式耳机相比,开放式耳机允许耳朵自然通风,减少耳道内的湿气和热量积聚,这有助于保持耳朵的健康。 然…...
JAVA打车小程序APP打车顺风车滴滴车跑腿源码微信小程序打车系统源码
🚗💨打车、顺风车、滴滴车&跑腿系统,一键解决出行生活难题! 一、出行新选择,打车从此不再难 忙碌的生活节奏,让我们常常需要快速、便捷的出行方式。打车、顺风车、滴滴车系统,正是为了满足…...
批量智慧:揭秘机器学习中的批量大小
标题:批量智慧:揭秘机器学习中的批量大小 机器学习是人工智能的一个分支,它使得计算机能够从数据中学习并做出决策或预测。在机器学习的过程中,批量大小(Batch Size)是一个至关重要的超参数,它…...
苹果Vision Pro生态发展:现状、挑战与未来展望
苹果公司以其创新技术和强大的生态系统闻名于世。在最近的财报会议上,CEO蒂姆库克分享了Vision Pro平台的最新进展,引发了业界的广泛关注。本文将深入探讨Vision Pro生态的现状、面临的挑战以及与其他XR平台的对比分析。 一、Vision Pro生态现状 据库克介绍,Vision Pro平台…...
湖南第一师范学院来访炼石,推动密码与数据安全合作
2024年8月11日,为进一步加强交流与合作,深入探讨校企产学研合作,湖南第一师范学院计算机学院院长杨恒伏一行莅临炼石调研指导。湖南第一师范学院计算机学院院长杨恒伏、网络空间安全系主任周聪等专家领导出席。炼石网络创始人兼CEO白小勇对湖…...
全面解析ETL:数据仓库架构中的关键处理过程
目录 一、数据仓库架构中的ETL 二、数据抽取 (1)逻辑抽取 (2)物理抽取 (3)变化数据捕获 三、数据转换 四、数据装载 (1)提高装载效率 (2)处理装载失败 五、ET…...
keepalived的介绍与配置
Keepalived是一个轻量级别的高可用解决方案,同时也是一个免费开源的、用C编写的类似于layer3, 4 & 7(也有说法认为是layer3, 4 & 5)交换机制的软件,主要提供负载均衡和高可用服务。它自动完成检测服务器的状态、故障隔离和…...
二叉树概念与使用
文章目录 一、作用二、二叉树概念特征2.1二叉树概念补充2.1.1度2.1.2深度2.1.3若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1个结点 三、使用2.1二叉树存储,检索,插入项目 四、 二叉树检索的时间复杂度1. 普通二叉树2. 二叉搜…...
MongoDB 在 Java 中的使用教程
目录 MongoDB 简介环境准备使用 Java 连接 MongoDB基本 CRUD 操作复杂查询操作索引和性能优化事务管理总结 1. MongoDB 简介 MongoDB 是一个基于分布式文件存储的 NoSQL 数据库系统。它以文档(JSON 形式)存储数据,具有高扩展性和灵活的数据…...
微前端架构下的配置管理:策略、实现与最佳实践
微前端架构通过将一个大型前端应用拆分为多个小型、自治的子应用,提升了开发效率和应用的可维护性。然而,随着应用规模的扩大和子应用数量的增加,配置管理变得日益复杂。本文将详细介绍在微前端架构下实现应用配置管理的策略、实现方法和最佳…...
React Native中好用的UI组件库
文章目录 前言1.React Native ElementsStar数超24K地址 2.React Native UI KittenStar数超20K地址 3.NativeBaseStar数超20K地址 前言 下面是React Native中一些常用的UI库 1.React Native Elements Star数超24K 官方介绍 React Native Elements 的目标是提供一套用于在 Rea…...
WebSocket 快速入门
WebSocket是什么 WebSocket 是基于 TCP 的一种新的应用层网络协议。它实现了浏览器与服务器全双工通信,即允许服务器主动发送信息给客户端。因此,在 WebSocket 中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性…...
MySQL中的存储文件和IO机制详细解析
MySQL中的存储文件和IO机制详细解析 一、引言 MySQL作为广泛使用的关系型数据库管理系统,凭借其高性能和稳定性在各大应用中扮演了关键角色。在实际应用中,数据库需要对大量数据进行存储、检索、更新等操作。这些操作离不开底层的文件存储系统…...
复习之 java 锁
裁员在家,没有面试机会,整理整理面试知识点吧! 不得不知道的java 锁 Java 中,提供了两种方式来实现同步互斥访问(也就是锁):synchronized 和 Lock 多线程编程中,有可能会出现多个线…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
