代码随想录Day34:62.不同路径、63.不同路径II、343.整数拆分、96.不同的二叉搜索树
62. 不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
题目链接:LeetCode62.不同路径
文档讲解:代码随想录LeetCode62.不同路径
题解
class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m; i++)dp[i][0] = 1;for (int j = 0; j < n; j++)dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
- 时间复杂度:O(mn)
- 空间复杂度:O(mn)
63. 不同路径II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
题目链接:LeetCode63.不同路径II
文档讲解:代码随想录LeetCode63.不同路径II
题解
当路径上出现障碍时,dp数组对应位置的值保持不变为0
class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++)dp[i][0] = 1;for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++)dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1)continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};
- 时间复杂度:O(mn)
- 空间复杂度:O(mn)
343. 整数拆分
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
题目链接:LeetCode343.整数拆分
文档讲解:代码随想录LeetCode343.整数拆分
题解
分拆数字 i 可以得到的最大乘积为dp[i],遍历过程中的递推公式为dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]))
class Solution {
public:int integerBreak(int n) {vector<int> dp(n + 1);dp[2] = 1;for (int i = 3; i <= n; i++) {for (int j = 1; j < i; j++) {dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]));}}return dp[n];}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(n)
96. 不同的二叉搜索树
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
题目链接:LeetCode96.不同的二叉搜索树
文档讲解:代码随想录LeetCode96.不同的二叉搜索树
题解
dp[i]为利用 i 个节点可以得到的不同二叉搜索树的种数,以n=3为例,dp[3] = 元素1为头节点搜索树的数量 + 元素2为头节点搜索树的数量 + 元素3为头节点搜索树的数量。
元素1为头节点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头节点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头节点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
class Solution {
public:int numTrees(int n) {vector<int> dp(n + 1);dp[0] = 1;dp[1] = 1;for (int i = 2; i <= n; i++) {for (int j = 0; j < i; j++) {dp[i] += dp[j] * dp[i - j - 1];}}return dp[n];}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(n)
相关文章:
代码随想录Day34:62.不同路径、63.不同路径II、343.整数拆分、96.不同的二叉搜索树
62. 不同路径 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径&…...
【信息学奥赛一本通】1008:计算(a+b)/c的值
1008:计算(ab)/c的值 时间限制: 1000 ms 内存限制: 66536 KB 提交数:164836 通过数: 142434 【题目描述】 给定3个整数a、b、c,计算表达式abc的值。 【输入】 输入仅一行,包括三个整数a、b、c, 数与数之间以一个空格分开。(-10,…...
使用 jstat 进行 Java 应用程序性能监控
jstat 使用经验笔记 1. 简介 jstat 是 Java 开发工具包 (JDK) 中的一个命令行工具,用于监控 Java 虚拟机 (JVM) 的运行时状态,特别是垃圾回收 (Garbage Collection, GC) 的行为。通过使用 jstat,你可以监控和诊断 Java 应用程序的内存使用情…...
Prompt指令调优大揭秘
Hey,技术达人们!今天咱们就来聊聊Prompt指令调优的那些事儿。想象一下,你有一个超级智能的AI小伙伴,但要让它更懂你,更给力,那就得靠点“魔法”——Prompt指令调优。准备好了吗?让我们一探究竟&…...
C语言中的⽂件操作
1. 为什么使⽤⽂件? 如果没有⽂件,我们写的程序的数据是存储在电脑的内存中,如果程序退出,内存回收,数据就丢失了,等再次运⾏程序,是看不到上次程序的数据的,如果要将数据进⾏持久化…...
黑马前端——days14_js
案例 1 页面框架文件 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title>&l…...
【自动驾驶】ROS中参数服务器通信(c++)
目录 通信过程新建参数服务器包编写测试文件修改cmakelist:搭配launch文件启动测试及结果 通信过程 1.Talker 设置参数 Talker 通过 RPC 向参数服务器发送参数(包括参数名与参数值),ROS Master 将参数保存到参数列表中。 2.Listener 获取参数 Listener 通过 RPC 向…...
零基础5分钟上手亚马逊云科技核心云开发知识 - 网络基础
简介: 欢迎来到小李哥全新亚马逊云科技AWS云计算知识学习系列,适用于任何无云计算或者亚马逊云科技技术背景的开发者,通过这篇文章大家零基础5分钟就能完全学会亚马逊云科技一个经典的服务开发架构方案。 我会每天介绍一个基于亚马逊云科技…...
Unity Recttransform操作
1、拉伸铺满 RectTransform rect GetComponent<RectTransform>();rect.anchorMin Vector2.zero;rect.anchorMax Vector2.one;rect.SetSizeWithCurrentAnchors(RectTransform.Axis.Horizontal, Screen.width);rect.SetSizeWithCurrentAnchors(RectTransform.Axis.Verti…...
MIT线性代数P5
置换矩阵 置换矩阵是行重新排列的单位矩阵。 置换矩阵用P表示, 性质: n阶置换矩阵共有n!个...
patroni+etcd开启SSL认证(三个节点证书一致 使用openssl命令)
瀚高数据库 目录 环境 文档用途 详细信息 环境 系统平台:Linux x86-64 Red Hat Enterprise Linux 7 版本:14 文档用途 本文主要介绍Patroni架构中如何开启etcd的ssl证书认证。 详细信息 一、前提说明 patroni版本:3.0.2 etcd版本&#x…...
Eureka入门指南:微服务注册与发现的基础概念
Eureka入门指南:微服务注册与发现的基础概念 引言 随着微服务架构的普及,微服务之间的高效通信和管理成为了开发和运维的核心挑战之一。为了解决服务发现和管理问题,Netflix推出了Eureka,一个功能强大的服务注册和发现工具。Eur…...
Linux:动态库和静态库
静态库与动态库 A:静态库(.a):程序在编译链接的时候把库的代码链接到可执行文件中。程序运行的时候将不再需要静态库。 B:动态库(.so):程序在运行的时候才去链接动态库的代码&#…...
8.13网络编程
笔记 多点通信 一、套接字属性 套接字属性的获取和设置 #include <sys/types.h> /* See NOTES */#include <sys/socket.h>int getsockopt(int sockfd, int level, int optname,void *optval, socklen_t *optlen);int setsockopt(int sockfd, int level…...
蚂蚁AL1 15.6T 创新科技的新典范
● 哈希率:算力达到15.6T(相当于15600G),即每秒能够进行15.6万亿次哈希计算,在同类产品中算力较为出色,能提高WA掘效率。 ● 功耗:功耗为3510W,虽然数值看似不低,但结合其…...
2024年【汽车驾驶员(技师)】考试报名及汽车驾驶员(技师)试题及解析
题库来源:安全生产模拟考试一点通公众号小程序 汽车驾驶员(技师)考试报名参考答案及汽车驾驶员(技师)考试试题解析是安全生产模拟考试一点通题库老师及汽车驾驶员(技师)操作证已考过的学员汇总…...
2024年【甘肃省安全员C证】报名考试及甘肃省安全员C证考试总结
题库来源:安全生产模拟考试一点通公众号小程序 甘肃省安全员C证报名考试参考答案及甘肃省安全员C证考试试题解析是安全生产模拟考试一点通题库老师及甘肃省安全员C证操作证已考过的学员汇总,相对有效帮助甘肃省安全员C证考试总结学员顺利通过考试。 1、…...
RabbitMQ 双机系统偶尔丢失消息问题排查
实话说起来,这个问题,实际是一个非常低级的错误导致的,算不得什么高深的技术问题。但是在排查的过程中,却是费了好大的功夫,死了不少脑细胞。所以也值得记录一下,算作给大家提个醒,或许可以帮大…...
Python 环境搭建指南 超详细
Python是由荷兰⼈吉多范罗苏姆(Guido von Rossum,后⾯都称呼他为Guido)发明的⼀种编程语言 1. 1989年圣诞节:Guido开始写Python语⾔的编译器。2. 1991年2⽉:第⼀个Python解释器诞⽣,它是⽤C语⾔实现的&…...
使用三菱PLC源码进行PLC读取写入操作
安装 MX Component 。 我的安装地址在: 打开 utl 文件夹下的 Communication Settings Utility 执行。 配置PLC 添加当前需要配置的PLC 注意 logical station Namber 就是程序里需要对接的逻辑站点编号 5.配置选择对应的COM操作选择对应的cpu型型号,…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
