当前位置: 首页 > news >正文

【论文笔记】LION: Linear Group RNN for 3D Object Detection in Point Clouds

原文链接:https://arxiv.org/abs/2407.18232

简介:Transformer在3D点云感知任务中有二次复杂度,难以进行长距离关系建模。线性RNN则计算复杂度较低,适合进行长距离关系建模。本文提出基于窗口的网络线性组RNN(即对分组的特征使用线性RNN;简称LION),用于3D目标检测,可实现在比Transformer网络更大的分组下进行充分的特征交互。为了解决线性组RNN处理空间建模的缺陷,本文引入3D空间特征描述器,整合到线性组RNN中,增强空间特征,而非增加体素序列的排序数。为进一步处理稀疏体素,本文提出3D体素生成策略,将线性组RNN用于自回归,以密集化前景特征。实验表明,LION在不同的线性组RNN(如Mamba、RWKV、RetNet)下均有效,且LION-Mamba能在多个数据集上达到SotA性能。

与组内体素数量有限的DSVT不同,LION可在数千个体素特征构成的组内进行特征交互,以建立长距离关系。

DSVT

在这里插入图片描述

LION

在这里插入图片描述

1. 概述

在这里插入图片描述
LION的流程如图所示。LION包含3D主干、BEV主干和检测头,其中3D主干基于线性组RNN,包含 N N N个用于长距离特征交互的LION块, N N N个增强稀疏点云特征表达的体素生成操作和 N N N个用于高度下采样的体素融合操作。

3D稀疏窗口分割:将输入点云体素化得到 L L L个非空体素后,按照X或Y坐标排序体素,并将排序的体素分割为大小为 K K K的组。由于线性组RNN的线性复杂度,组的大小 K K K可以比基于Transformer的方法大很多。

2. LION块

LION块包括用于长距离特征交互的LION层、用于捕捉3D空间信息的3D空间特征描述器、用于下采样的体素融合操作和用于上采样的体素扩张操作。此外,LION有提取多尺度特征的层次结构。
在这里插入图片描述
LION层:LION层包括两个线性组RNN,前者基于X轴窗口分割,后者基于Y轴窗口分割。两种窗口分割可使特征进行更充分的交互。

3D空间特征描述器:由于体素排序过程会丢失空间信息(如图所示,实际很近的体素在排序后变得很远),一些方法增加排序方式,但其属于手工设计的方法,且复杂度会随着排序方式的增多而增加。本文使用3D空间特征描述器,包括3D子流形卷积、层归一化和GELU激活函数,为LION层提供丰富的3D局部位置感知的信息。此外,将3D空间特征描述器放置于体素融合前,以减小体素融合过程中的空间信息损失。
在这里插入图片描述
体素融合和体素扩张:为获取多尺度特征,LION使用层次特征提取结构。本文使用体素融合和体素扩张进行下采样和上采样。体素融合过程中会计算索引映射,而体素扩张会根据逆索引映射上采样体素。

3. 体素生成

为处理高度稀疏点云特征提取的挑战和体素融合中的信息损失,本文利用RNN的自回归能力,提出体素生成策略。

无监督的前景体素区分:首先需要确定体素生成的区域。有工作使用监督方法获取BEV下的前景区域,但本文注意到,主干中特征在通道维度上的响应较高的位置通常为前景。因此本文计算第 i i i个LION块的特征响应 F i ∗ F_i^* Fi
F i ∗ = 1 C ∑ j = 0 C F i j F^*_i=\frac1C\sum_{j=0}^CF_i^j Fi=C1j=0CFij

随后,选择前 m = r ∗ L m=r*L m=rL个体素作为前景( r r r为前景比例):
F m = Top m ( F i ∗ ) F_m=\text{Top}_m(F_i^*) Fm=Topm(Fi)

其中, F m F_m Fm为选择的前景特征,会用于后续的体素生成。

自回归属性的体素生成:传统方法使用KNN的方式,基于KNN特征生成体素特征,但这一方法是次优的,因其存在冗余特征和有限的感受野。本文利用线性RNN的自回归能力,通过与组内其它体素特征交互,生成新的体素特征。具体来说,本文定义前景特征 F m F_m Fm相应的位置为 P m P_m Pm。首先以4个不同的偏移量( [ − 1 , − 1 , 0 ] , [ 1 , 1 , 0 ] , [ − 1 , 1 , 0 ] , [ 1 , − 1 , 0 ] [-1,-1,0],[1,1,0],[-1,1,0],[1,-1,0] [1,1,0],[1,1,0],[1,1,0],[1,1,0])扩散体素,然后初始化扩散的体素为0。将第 i i i个LION块的输出特征 F i F_i Fi与上述初始化特征一起输入到第 i + 1 i+1 i+1个LION块,从而生成扩散的体素。
在这里插入图片描述
上述过程可表示如下:
F p = F i ⊕ F [ − 1 , − 1 , 0 ] ⊕ F [ 1 , 1 , 0 ] ⊕ F [ 1 , − 1 , 0 ] ⊕ F [ − 1 , 1 , 0 ] F p ′ = Block ( F p ) F_p=F_i\oplus F_{[-1,-1,0]}\oplus F_{[1,1,0]}\oplus F_{[1,-1,0]}\oplus F_{[-1,1,0]}\\ F'_p=\text{Block}(F_p) Fp=FiF[1,1,0]F[1,1,0]F[1,1,0]F[1,1,0]Fp=Block(Fp)

相关文章:

【论文笔记】LION: Linear Group RNN for 3D Object Detection in Point Clouds

原文链接:https://arxiv.org/abs/2407.18232 简介:Transformer在3D点云感知任务中有二次复杂度,难以进行长距离关系建模。线性RNN则计算复杂度较低,适合进行长距离关系建模。本文提出基于窗口的网络线性组RNN(即对分组…...

打造高可用集群的基石:深度解析Keepalived实践与优化

高可用集群 集群类型 集群类型主要分为负载均衡集群(LB)、高可用集群(HA)和高性能计算集群(HPC)三大类。每种集群类型都有其特定的应用场景和优势。 1. 负载均衡集群(LB) 负载均衡集…...

Web大学生网页作业成品——环保主题介绍网页网站设计与实现(HTML+CSS)(5个页面)

🎉🎉🎉 常见网页设计作业题材有**汽车、环保、明星、文化、国家、抗疫、景点、人物、体育、植物、公益、图书、节日、游戏、商城、旅游、家乡、学校、电影、动漫、非遗、动物、个人、企业、美食、婚纱、其他**等网页设计题目, 可满足大学生网…...

Qt登录窗口设计

widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QIcon> //图标类 #include <QPushButton> #include <QLineEdit> //行编辑 #include <QLabel> #include <QTextEdit> #include <QMovie>class Widge…...

探索数据矿藏:我的AI大模型与数据挖掘实战经验分享

&#x1f680; 探索数据矿藏&#xff1a;我的AI大模型与数据挖掘实战经验分享 &#x1f496; 前言&#xff1a;数据的金矿&#xff0c;AI的翅膀 在人工智能的浪潮中&#xff0c;我有幸作为项目负责人&#xff0c;带领团队深入挖掘数据的潜力&#xff0c;利用AI大模型的力量&am…...

linux C语言strcat函数及相关函数

讯飞星火 strcat函数是C语言中的一个字符串处理函数,用于将一个字符串追加到另一个字符串的末尾。它的原型如下: char *strcat(char *dest, const char *src);参数说明: dest:目标字符串,即要将src字符串追加到这个字符串的末尾。src:源字符串,即要追加到dest字符串末…...

使用 sort 进行文本文件处理

sort 使用经验笔记 一、简介 sort 是一个命令行工具&#xff0c;用于对文本文件中的行进行排序。它广泛应用于 Unix/Linux 系统中&#xff0c;可以用来对文件的内容进行简单的排序操作&#xff0c;也可以与其他命令结合使用来完成更复杂的任务。 二、基本用法 排序文件: sor…...

HarmonyOS笔记4:从云数据库获取数据

移动应用获取数据的方式主要有&#xff1a; 1.从网络中获取数据接口API。 2.从华为云数据库获取云数据库的资源。 3.从移动终端直接获取本地的数据 在HarmonyOS笔记3中已经完成了方式一从网络中获取数据接口API的方式。在本篇笔记中&#xff0c;将讨论从云数据库中获取数据。 因…...

QT5生成独立运行的exe文件

目录 1 生成独立运行的exe文件1.1 设置工程Release版本可执行文件存储路径1.2 将工程编译成Release版本 2 使用QT5自带的windeployqt拷贝软件运行依赖项3 将程序打包成一个独立的可执行软件exe4 解决QT5 This application failed to start because no Qt platform plugin could…...

LabVIEW光纤水听器闭环系统

开发了一种利用LabVIEW软件开发的干涉型光纤水听器闭环工作点控制系统。该系统通过调节光源频率和非平衡干涉仪的光程差&#xff0c;实现了工作点的精确控制&#xff0c;从而提高系统的稳定性和检测精度&#xff0c;避免了使用压电陶瓷&#xff0c;使操作更加简便。 项目背景 …...

Shell——流程控制语句(if、case、for、while等)

在 Shell 编程中&#xff0c;流程控制语句用于控制脚本的执行顺序和逻辑。这些语句包括 if、case、for、while 等&#xff0c;它们的使用可以使脚本实现更复杂的逻辑。以下是它们的详细说明和语法结构&#xff1a; 1. if 语句 if 语句用于条件判断&#xff0c;执行符合条件的…...

【redis的大key问题】

在使用 Redis 的过程中&#xff0c;如果未能及时发现并处理 Big keys&#xff08;下文称为“大Key”&#xff09;&#xff0c;可能会导致服务性能下降、用户体验变差&#xff0c;甚至引发大面积故障。 本文将介绍大Key产生的原因、其可能引发的问题及如何快速找出大Key并将其优…...

HighPoint SSD7749M2:128TB NVMe 存储卡实现28 GB/s高速传输

HighPoint Technologies推出了一款全新的SSD7749M2 RAID卡&#xff0c;能够在标准的桌面工作站中安装多达16个M.2 SSD&#xff0c;实现高达128TB的闪存存储。该卡通过PCIe Gen4 x16接口提供高达28 GB/s的顺序读写性能。这些令人瞩目的性能规格伴随着高昂的价格标签。 #### 技术…...

ARM 裸机与 Linux 驱动对比及 Linux 内核入门

目录 ARM裸机代码和驱动的区别 Linux系统组成 内核五大功能 设备驱动分类 内核类型 驱动模块 驱动模块示例 Makefile配置 命令 编码辅助工具 内核中的打印函数 printk 函数 修改打印级别 ​编辑 打印级别含义 驱动多文件编译 示例 模块传递参数 命令行传递参数…...

0101DNS TCP fallback on UDP query timeout disabled-redission-中间件

文章目录 1.问题描述2.临时解决方案 结语 1.问题描述 Springcloud 项目&#xff0c;微服务模块使用redission&#xff0c;启动报错 DNS TCP fallback on UDP query timeout disabled. Upgrade Netty to 4.1.105 or higher.相关软件版本如下 软件版本描述springboot2.7.18spr…...

位运算

x1010 原码&#xff1a;000...1010 &#xff08;一共32位&#xff09; 反码&#xff1a;111...0101 &#xff08;~x&#xff09; 补码&#xff1a;111...0110 &#xff08;反码1&#xff09;&#xff08;-x&#xff09; 1、n 的二进制表示中第 k 位是几 #include<iost…...

MemFire Cloud是否真的可以取代后端

近年来&#xff0c;随着前端技术的迅速发展&#xff0c;前端工程师们越来越多地开始思考一个问题&#xff1a;“我还能不能不依赖后端&#xff1f;” 这种想法并非空穴来风&#xff0c;尤其是随着像MemFire Cloud这样的工具出现&#xff0c;它不仅能让开发者在没有后端的情况下…...

数据结构(邓俊辉)学习笔记】优先级队列 06——完全二叉堆:批量建堆

文章目录 1. 自上而下的上滤&#xff1a;算法2. 自上而下的上滤&#xff1a;效率3. 自下而上的下滤&#xff1a;算法4. 自下而上的下滤&#xff1a;实例5. 自下而上的下滤&#xff1a;效率 1. 自上而下的上滤&#xff1a;算法 在介绍过完全二叉堆标准的静态和动态操作接口之后…...

Java | Leetcode Java题解之第344题反转字符串

题目&#xff1a; 题解&#xff1a; class Solution {public void reverseString(char[] s) {int n s.length;for (int left 0, right n - 1; left < right; left, --right) {char tmp s[left];s[left] s[right];s[right] tmp;}} }...

定制开发AI智能名片O2O商城小程序:基于限量策略与个性化追求的营销创新

摘要:随着科技的飞速发展和消费者需求的日益多元化&#xff0c;传统商业模式正经历着前所未有的变革。在数字化转型的大潮中&#xff0c;定制开发AI智能名片O2O商城小程序作为一种新兴的商业模式&#xff0c;凭借其独特的个性化定制能力、高效的线上线下融合&#xff08;O2O&am…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...