深度学习(YOLO、DETR) 十折交叉验证
二:交叉验证
在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性能。同时由于验证机和训练集是不参与训练的,导致大量的数据无法应用于学习,所以显而易见的会导致训练的效果下降。
二:K 折交叉验证
将训练集数据划分为 K 部分,利用其中的 K-1 份做为训练,剩余的一份作为测试,最后取平均测试误差做为泛化误差。这样做的好处是,训练集的所有样本都必然会成为训练数据同时页必然有机会成为一次测试集。可以更好的利用训练集数据。
K 越大,平均误差被视为泛化误差这个结果就越可靠,但相应的所花费的时间也是线性增长的。

上图 中 划分测试、训练、验证的时候 平均分成10份 7份训练 1份验证 2份测试 。
按照顺序循环成一个圈 代码如下:
import os
import shutil
import numpy as np#文件地址
postfix = 'jpg'
imgpath = 'D:\\dataset\\images'
txtpath = 'D:\\dataset\\txt'# 创建存储交叉验证结果的基础目录
os.makedirs('cross_validation', exist_ok=True)# 获取文件列表并按文件名排序
listdir = np.array(sorted([i for i in os.listdir(txtpath) if i.endswith('.txt')], key=lambda x: int(x[:-4])))# 将文件列表等分为10份
folds = np.array_split(listdir, 10)# 进行10次交叉验证
for fold in range(10):# 初始化训练、验证、测试集索引train_indices = []val_indices = []test_indices = []# 训练集索引for i in range(7):index = (fold + i) % 10train_indices.extend(folds[index])# 验证集索引val_index = (fold + 7) % 10val_indices.extend(folds[val_index])# 测试集索引test_indices.extend(folds[(fold + 8) % 10])test_indices.extend(folds[(fold + 9) % 10])# 打印每次折的训练集、验证集和测试集的大小print(f'Fold {fold + 1}:')print(f' Train set size: {len(train_indices)}')print(f' Validation set size: {len(val_indices)}')print(f' Test set size: {len(test_indices)}')# 为当前折创建目录fold_dir = f'cross_validation/fold_{fold + 1}'os.makedirs(f'{fold_dir}/images/train', exist_ok=True)os.makedirs(f'{fold_dir}/images/val', exist_ok=True)os.makedirs(f'{fold_dir}/images/test', exist_ok=True)os.makedirs(f'{fold_dir}/labels/train', exist_ok=True)os.makedirs(f'{fold_dir}/labels/val', exist_ok=True)os.makedirs(f'{fold_dir}/labels/test', exist_ok=True)# 将文件复制到当前折的训练、验证和测试目录中for i in train_indices:img_file = f'{imgpath}/{i[:-4]}.jpg'lbl_file = f'{txtpath}/{i}'shutil.copy(img_file, f'{fold_dir}/images/train/{i[:-4]}.jpg')shutil.copy(lbl_file, f'{fold_dir}/labels/train/{i}')for i in val_indices:img_file = f'{imgpath}/{i[:-4]}.jpg'lbl_file = f'{txtpath}/{i}'shutil.copy(img_file, f'{fold_dir}/images/val/{i[:-4]}.jpg')shutil.copy(lbl_file, f'{fold_dir}/labels/val/{i}')for i in test_indices:img_file = f'{imgpath}/{i[:-4]}.jpg'lbl_file = f'{txtpath}/{i}'shutil.copy(img_file, f'{fold_dir}/images/test/{i[:-4]}.jpg')shutil.copy(lbl_file, f'{fold_dir}/labels/test/{i}')

images和txt文件夹下存放文件,没有任何子文件夹
相关文章:
深度学习(YOLO、DETR) 十折交叉验证
二:交叉验证 在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性…...
基于php网上差旅费报销系统设计与实现
网上报销系统以LAMP(LinuxApacheMySQLPHP)作为平台,涉及到PHP语言、MySQL数据库、JavaScript语言、HTML语言。 2.1 PHP语言简介 PHP,一个嵌套的缩写名称,是英文 “超级文本预处理语言”(PHP: Hypertext Preprocessor)的缩写。P…...
微服务及安全
一、微服务的原理 1.什么是微服务架构 微服务架构区别于传统的单体软件架构,是一种为了适应当前互联网后台服务的「三高需求:高并发、高性能、高可用」而产生的的软件架构。 单体式应用程序 与微服务相对的另一个概念是传统的单体式应用程序( Monolithic application ),…...
图文详解ThreadLocal:原理、结构与内存泄漏解析
目录 一.什么是ThreadLocal 二.ThreadLocal的内部结构 三.ThreadLocal带来的内存泄露问题 ▐ key强引用 ▐ key弱引用 总结 一.什么是ThreadLocal 在Java中,ThreadLocal 类提供了一种方式,使得每个线程可以独立地持有自己的变量副本,而…...
基于java的综合小区管理系统论文.doc
摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统综合小区管理系统信息管理难度大,容错率低&am…...
如何合理设置PostgreSQL的`max_connections`参数
合理设置PostgreSQL的max_connections参数对于数据库的稳定性和性能至关重要。这个设置值决定了允许同时连接到数据库的最大客户端数量。如果设置不当,可能导致资源浪费或系统过载。以下是设置max_connections时需要考虑的几个关键因素: 1. 评估系统硬件…...
Kubectl 常用命令汇总大全
kubectl 是 Kubernetes 自带的客户端,可以用它来直接操作 Kubernetes 集群。 从用户角度来说,kubectl 就是控制 Kubernetes 的驾驶舱,它允许你执行所有可能的 Kubernetes 操作;从技术角度来看,kubectl 就是 Kubernetes…...
【Linux】Linux环境基础开发工具使用之Linux调试器-gdb使用
目录 一、程序发布模式1.1 debug模式1.2 release模式 二、默认发布模式三、gdb的使用结尾 一、程序发布模式 程序的发布方式有两种,debug模式和release模式 1.1 debug模式 目的:主要用于开发和测试阶段,目的是让开发者能够更容易地调试和跟…...
clickhouse_driver
一、简介 clickhouse_driver是一个Python库,用于与ClickHouse数据库进行交互。ClickHouse是一个高性能的列式数据库管理系统(DBMS),它适用于实时分析(OLAP)场景。clickhouse_driver模块提供了与ClickHouse…...
BI分析实操案例分享:零售企业如何利用BI工具对销售数据进行分析?
在当下这个竞争激烈的零售市场,企业如何在波诡云谲的商场中站稳脚跟,实现销售目标的翻倍增长? 答案可能就藏在那些看似杂乱无章的数字里。 是的,你没有看错,答案正是那些我们日常接触的销售数据。它们就像是宝藏&…...
python : Requests请求库入门使用指南 + 简单爬取豆瓣影评
Requests 是一个用于发送 HTTP 请求的简单易用的 Python 库。它能够处理多种 HTTP 请求方法,如 GET、POST、PUT、DELETE 等,并简化了 HTTP 请求流程。对于想要进行网络爬虫或 API 调用的开发者来说,Requests 是一个非常有用的工具。在今天的博…...
宋红康JVM调优思维导图
文章目录 1. 概述2. JVM监控及诊断命令-命令行篇3. JVM监控及诊断工具-GUI篇4. JVM运行时参数5. 分析GC日志 课程地址 1. 概述 2. JVM监控及诊断命令-命令行篇 3. JVM监控及诊断工具-GUI篇 4. JVM运行时参数 5. 分析GC日志...
linux 网卡配置
linux网卡可以通过命令和配置文件配置,如果是桌面环境还可以通过图形化界面配置. 1.ifconfig(interfaces config)命令方式 通常需要以root身份登录或使用sudo以便在Linux机器上使用ifconfig工具。依赖于ifconfig命令中使用一些选项属性,ifconfig工具不仅可以被用来…...
IEEE |第五届机器学习与计算机应用国际学术会议(ICMLCA 2024)
第五届机器学习与计算机应用国际学术会议(ICMLCA 2024)定于2024年10月18-20日在中国杭州隆重举行。本届会议将主要关注机器学习和计算机应用面临的新的挑战问题和研究方向,着力反映国际机器学习和计算机应用相关技术研究的最新进展。 IEEE |第五届机器学习与计算机应…...
【网络安全】漏洞挖掘:IDOR实例
未经许可,不得转载。 文章目录 正文 正文 某提交系统,可以选择打印或下载passport。 点击Documents > Download后,应用程序将执行 HTTP GET 请求: /production/api/v1/attachment?id4550381&enamemId123888id为文件id&am…...
vue项目执行 cnpm install 报错证书过期的解决方案
拉下源码后执行依赖安装过程,报错 error Error: Certificate has expired,可以通过一下方发解决:npm config set strict-ssl false 再执行 cnpm 命令即可正常拉依赖...
XGboost的安装与使用
安装xgboost: conda install py-xgboost下载demo的数据: https://github.com/dmlc/xgboost 安装graphviz conda install python-graphviz数据 在demo/data里面: 训练集是:agaricus.txt.train、测试集是:agaricus…...
【AI趋势9】开源普惠
关于开源的问题,可以参考我之前的文章: 再说开源软件-CSDN博客 【AI】马斯克说大模型要开源,我们缺的是源代码?(附一图看懂6大开源协议)_分开源和闭源,我们要的当然是开源,马斯克开源。-CSDN博客 一、开…...
【Spark集群部署系列一】Spark local模式介绍和搭建以及使用(内含Linux安装Anaconda)
简介 注意: 在部署spark集群前,请部署好Hadoop集群,jdk8【当然Hadoop集群需要运行在jdk上】,需要注意hadoop,spark的版本,考虑兼容问题。比如hadoop3.0以上的才兼容spark3.0以上的。 下面是Hadoop集群部署…...
泛微OA 常用数据库表
HrmDepartment 人力资源部门 HrmSubCompany 人力资源分部 HrmResource 员工信息表 HrmRoles 角色信息表 T_Condition 报表条件 T_ConditionDetail 报表条件详细值 T_DatacenterUser 基层用户信息 T_FadeBespeak 调查退订表 T_fieldItem 调查项目表输入项信息 T_fieldItemDetail…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
