大模型笔记之-XTuner微调个人小助手认知
前言
使用XTuner 微调个人小助手认知
一、下载模型
#安装魔搭依赖包
pip install modelscope
- 新建download.py内容如下
其中Shanghai_AI_Laboratory/internlm2-chat-1_8b是魔搭对应的模型ID
cache_dir='/home/aistudio/data/model’为指定下载到本地的目录
from modelscope import snapshot_download
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-chat-1_8b',cache_dir='/home/aistudio/data/model')
二、安装 XTuner
1.创建环境
#新建一个code文件夹
mkdir -p /home/aistudio/data/code
#切换到该目录下
cd /home/aistudio/data/code
#从 Github 上下载源码
git clone -b v0.1.21 https://github.com/InternLM/XTuner
#进入源码目录
cd XTuner
# 执行安装
pip install -e '.[deepspeed]'
2.结果验证
xtuner version
三. 快速开始
这里我们用 internlm2-chat-1_8b 模型,通过 QLoRA 的方式来微调一个自己的小助手认知作为案例来进行演示
1.准备数据
#新建datas文件夹
mkdir -p datas
#创建json文件
touch datas/assistant.json
2.数据生成
1.新建一个xtuner_generate_assistant.py内容如下
2.修改neme由“伍鲜同志”改为“阿豪”
3.修改数据写入路径为刚刚创建的json文件
import json# 设置用户的名字
name = '阿豪'
# 设置需要重复添加的数据次数
n = 8000# 初始化数据
data = [{"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},{"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):data.append(data[0])data.append(data[1])# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:# 使用json.dump方法将数据以JSON格式写入文件# ensure_ascii=False 确保中文字符正常显示# indent=4 使得文件内容格式化,便于阅读json.dump(data, f, ensure_ascii=False, indent=4)
3.初始化数据
#执行
python xtuner_generate_assistant.py

4.获取训练脚本
xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .
修改内容如下
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig)from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = '/mnt/workspace/model/Shanghai_AI_Laboratory/internlm2-chat-1_8b'
use_varlen_attn = False# Data
alpaca_en_path = '/mnt/workspace/code/datas/assistant.json'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True# parallel
sequence_parallel_size = 1# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 16
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03# Save
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ['请介绍一下你自己', 'Please introduce yourself'
]#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(type=AutoTokenizer.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,padding_side='right')model = dict(type=SupervisedFinetune,use_varlen_attn=use_varlen_attn,llm=dict(type=AutoModelForCausalLM.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=dict(type=BitsAndBytesConfig,load_in_4bit=True,load_in_8bit=False,llm_int8_threshold=6.0,llm_int8_has_fp16_weight=False,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type='nf4')),lora=dict(type=LoraConfig,r=64,lora_alpha=16,lora_dropout=0.1,bias='none',task_type='CAUSAL_LM'))#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)sampler = SequenceParallelSampler \if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(batch_size=batch_size,num_workers=dataloader_num_workers,dataset=alpaca_en,sampler=dict(type=sampler, shuffle=True),collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(type=AmpOptimWrapper,optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),accumulative_counts=accumulative_counts,loss_scale='dynamic',dtype='float16')# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [dict(type=LinearLR,start_factor=1e-5,by_epoch=True,begin=0,end=warmup_ratio * max_epochs,convert_to_iter_based=True),dict(type=CosineAnnealingLR,eta_min=0.0,by_epoch=True,begin=warmup_ratio * max_epochs,end=max_epochs,convert_to_iter_based=True)
]# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer),dict(type=EvaluateChatHook,tokenizer=tokenizer,every_n_iters=evaluation_freq,evaluation_inputs=evaluation_inputs,system=SYSTEM,prompt_template=prompt_template)
]if use_varlen_attn:custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type=IterTimerHook),# print log every 10 iterations.logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),# enable the parameter scheduler.param_scheduler=dict(type=ParamSchedulerHook),# save checkpoint per `save_steps`.checkpoint=dict(type=CheckpointHook,by_epoch=False,interval=save_steps,max_keep_ckpts=save_total_limit),# set sampler seed in distributed evrionment.sampler_seed=dict(type=DistSamplerSeedHook),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
visualizer = None# set log level
log_level = 'INFO'# load from which checkpoint
load_from = None# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)# set log processor
log_processor = dict(by_epoch=False)
5.开启训练
xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py



微调前


6. 模型格式转换
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

7.模型合并
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

8.测试效果
python -m streamlit run xtuner_streamlit_demo.py

相关文章:
大模型笔记之-XTuner微调个人小助手认知
前言 使用XTuner 微调个人小助手认知 一、下载模型 #安装魔搭依赖包 pip install modelscope新建download.py内容如下 其中Shanghai_AI_Laboratory/internlm2-chat-1_8b是魔搭对应的模型ID cache_dir/home/aistudio/data/model’为指定下载到本地的目录 from modelscope im…...
用TensorFlow实现线性回归
说明 本文采用TensorFlow框架进行讲解,虽然之前的文章都采用mxnet,但是我发现tensorflow提供了免费的gpu可供使用,所以果断开始改为tensorflow,若要实现文章代码,可以使用colaboratory进行运行,当然&#…...
IT计算机软件系统类毕业论文结构指南:从标题到结论的全景视角
一、背景 在快速发展的IT和人工智能领域,毕业论文不仅是学术研究的重要成果,也展示了学生掌握新技术和应用的能力。随着大数据和智能系统的复杂性增加,毕业设计(毕设)的论文章节安排变得尤为关键。一个结构清晰、内容详…...
leetcode27:移除元素(正解)
移除元素 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。 假设 nums 中不等于 val 的元素数量为 k,要通过此题,您需要执行以下操作…...
docker部署nginx--(部署静态文件和服务)
文档参考 1、http://testingpai.com/article/1649671014266 2、下载nginx docker pull nginx:alpine 然后启动nginx, docker run --rm -it -p 9192:80 nginx:alpine /bin/sh 关闭容器后,自动删除该容器 进入后,启动nginx, nginx进行curl h…...
websocket的介绍及springBoot集成示例
目录 一、什么是Websocket 二、Websocket特点 三、WebSocket与HTTP的区别 四、常见应用场景 五、SpringBoot集成WebSocket 1. 原生注解 2. Spring封装 一、什么是Websocket WebSocket 是一种在单个 TCP 连接上进行 全双工 通信的协议,它可以让客户端和服务器…...
软件测试-自动化测试
自动化测试 测试人员编写自动化测试脚本,维护并解决自动化脚本问题 自动化的主要目的就是用来进行回归测试 回归测试 常见面试题 ⾃动化测试能够取代人工测试吗? ⾃动化测试不⼀定⽐人工测试更能保障系统的可靠性,⾃动化测试是测试⼈员手…...
Linux 安装TELEPORT堡垒机
一、查看官方文档 堡垒机官网地址:走向成功 - Teleport,高效易用的堡垒机 (一)官网资源链接 -》Teleport 在线文档 (二)手动下载安装包 二、压缩包下载和安装 (一)加压下载的安装…...
【14】即时编译器的中间表达形式
中间表达形式(IR) 编译器一般被分为前端和后端。 前端会对输入的程序进行词法分析、语法分析和语义分析,然后生成中间表达形式(IR);后端对IR进行优化,生成目标代码 不考虑解释执行的话…...
Mysql(三)---增删查改(基础)
文章目录 前言1.补充1.修改表名1.2.修改列名1.3.修改列类型1.4.增加新列1.5.删除指定列 2.CRUD3.新增(Create)3.1.单行插入3.2.指定列插入3.3.多行插入 4.数据库的约束4.1.约束的分类4.2.NULL约束4.3.Unique约束4.4.Default 默认值约束4.5.PRIMARY KEY:主键约束4.6.…...
Dialog实现原理分析
在 Android 中,对话框(Dialog)是一种非常常见的用户界面组件,用于向用户提供额外的信息或者请求用户的确认。Android 提供了几种不同类型的对话框,例如简单的消息对话框 (AlertDialog)、进度条对话框 (ProgressDialog)…...
21.1 基于Netty实现聊天
21.1 基于Netty实现聊天 一. 章节概述二. `Netty`介绍三. 阻塞与非阻塞1. 阻塞与非阻塞简介2. BIO同步阻塞3. NIO同步非阻塞4. AIO异步非阻塞IO5. 异步阻塞IO(用的极少)6. 总结四. Netty三种线程模型1. 单线程模型2. 多线程模型3. 主从线程模型五. 构建Netty服务器************…...
尼卡音乐 v1.0.5 — 全新推出的免费音乐听歌软件
尼卡音乐是一款全新推出的免费音乐听歌软件,无需注册登录,打开即拥有全部功能。聚合了六大音源曲库、歌单、排行榜,支持在线试听、无损下载以及高清MV播放。资源全、无广告、更新快,适合寻找高品质音乐体验的用户。 拿走的麻烦评…...
Scratch深潜:解锁递归与分治算法的编程之门
亮眼标题:“Scratch深潜:解锁递归与分治算法的编程之门” 在编程的世界里,递归和分治算法是解决问题的强大工具。Scratch,这款广受儿童和初学者欢迎的图形化编程语言,以其独特的拖拽式编程块,激发了无数年…...
【1.0】vue3的创建
【1.0】vue3的创建 【一】vue3介绍 vue2的所有东西,vue3都兼容 vue3中写js代码由两种,组合式和配置项 配置项api,就是vue2的写法,将数据放进data,方法放进methods等 export default{data(){return {}},methods:…...
刷刷前端手写题
闭包用途 闭包 闭包让你可以在一个内层函数中访问到其外层函数的作用域 防抖 描述 前面所有触发都被取消,最后一次执行,在规定时间之后才会触发,也就是说如果连续快速的触发,用户操作频繁,但只会执行一次 。 常用场…...
论文解读:LONGWRITER: UNLEASHING 10,000+ WORD GENERATION FROM LONG CONTEXT LLMS
摘要 现象:当前的大预言模型可以接受超过100,000个tokens的输入,但是却难以生成超过2000个token的输出。 原因:监督微调过程(SFT)中看到的样本没有足够长的样本。 解决方法: Agent Write,可以将长任务分解为子任务&a…...
一文了解Ansible原理以及常见使用模块
ansible使用手册 1. 简述 Ansible 是一种开源的自动化工具,主要用于配置管理、应用程序部署和任务自动化。 它使用简单的 YAML 语言来定义自动化的任务【playbook】,使得配置和部署变得更加直观和易于管理。 基于SSH协议连接到远程主机来执行指令。 2…...
JavaEE从入门到起飞(九) ~Activiti 工作流
工作流 当一道流程逻辑需要用到多个表单的提交和多个角色的审核共同完成的时候,就可以使用工作流。 工作流一般使用的是第三方技术,也就是说别人帮你创建数据库表和service层、mapper层,你只需要注入工具接口即可使用。 原理:一…...
微服务的保护
一、雪崩问题及解决方案 1.雪崩问题 微服务之间,一个微服务依赖多个其他的微服务。当一个微服务A依赖的一个微服务B出错时,微服务A会被阻塞,但其他不依赖于B的微服务不会受影响。 当有多个微服务依赖于B时,服务器支持的线程和并…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
