当前位置: 首页 > news >正文

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

文章目录

  • 一、基本原理
      • 原理
      • 流程
      • 举个例子
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

一、基本原理

鲸鱼智能优化(Whale Optimization Algorithm, WOA)是一种基于鲸鱼捕食行为的自然启发算法,用于解决优化问题。在特征选择中,它可以用来选择对分类器(如KNN分类器)性能影响最大的特征。以下是鲸鱼智能优化在特征选择中的应用原理和流程。

原理

鲸鱼智能优化算法受座头鲸的捕食行为启发,主要模拟座头鲸的“圈捕猎”策略。这个算法包括两个主要步骤:探索和开发。探索阶段鲸鱼在大范围内搜索潜在的解,开发阶段则在当前优秀解附近精细搜索。其核心思想是通过模拟鲸鱼的猎食行为来寻找最优解。

在特征选择中,WOA的目标是选择一组特征,使得分类器(如KNN)的性能(通常是分类准确率)最优。WOA通过在特征子集上进行搜索,优化特征选择,以提高分类器的性能。

流程

  1. 初始化:

    • 定义问题空间:确定特征的总数,并初始化鲸鱼个体的位置。这些位置代表特征的选择状态(选择或不选择)。
    • 设置算法参数:例如鲸鱼的数量、最大迭代次数等。
  2. 编码特征选择:

    • 使用二进制编码来表示特征选择的状态。每个鲸鱼个体对应一个特征子集,0表示不选择该特征,1表示选择该特征。
  3. 评估适应度:

    • 对每个鲸鱼个体所代表的特征子集,使用KNN分类器进行训练和测试,计算分类器的性能指标(如准确率、F1分数等)。
    • 适应度值通常是分类器性能的度量,性能越好,适应度值越高。
  4. 更新位置:

    • 基于鲸鱼的猎食行为更新鲸鱼的位置。主要有两种策略:
      • 圈捕猎:鲸鱼围绕猎物(当前最优解)进行搜索,通过公式调整位置。
      • 随机猎食:鲸鱼随机选择搜索范围内的猎物进行优化。
    • 更新公式会根据当前鲸鱼个体的位置与最优解的位置进行调整,可能包括“缩放”操作来控制搜索的范围。
  5. 更新最优解:

    • 每次迭代后,更新全局最优解。如果当前鲸鱼个体的适应度比全局最优解更好,则更新全局最优解。
  6. 终止条件:

    • 如果达到最大迭代次数或适应度值没有显著提高,算法终止。
  7. 输出结果:

    • 最终选择的特征子集是全局最优解对应的特征集合。

举个例子

假设有10个特征,鲸鱼智能优化算法初始化时随机选择一些特征子集(比如选择第2、4、7个特征)。然后使用KNN分类器评估这些子集的分类性能。通过迭代和调整,算法逐步找到最优的特征子集,使得KNN分类器的分类准确率最高。

总结

鲸鱼智能优化算法通过模拟鲸鱼的自然行为来优化特征选择过程,利用特征子集的适应度值来指导搜索方向,从而提高KNN分类器的性能。这个方法的优点是能够在较大的特征空间中进行有效的搜索,找到最优的特征子集,进而提升分类器的性能。

二、实验结果

数据集可以任意替换

WOA特征选择 KNN分类器
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

相关文章:

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器) 文章目录 一、基本原理原理流程举个例子总结 二、实验结果三、核心代码四、代码获取五、总结 智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序&#x…...

使用udp进行通信

UDP chat 头文件 #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <time…...

C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作

C#上位机使用Microsoft.Office.Interop.Excel和EPPlus库对Excel或WPS表格进行写操作 一、使用Microsoft.Office.Interop.Excel库 1、通过NuGet包管理器添加引用 按照下图中红框所示进行操作。 需要安装Microsoft.Office.Interop.Excel包 添加Microsoft Office 16.0 Object …...

java重点学习-redis

一.redis 穿透无中生有key&#xff0c;布隆过滤nul隔离 锁与非期解难题。缓存击穿过期key&#xff0c; 雪崩大量过期key&#xff0c;过期时间要随机。 面试必考三兄弟&#xff0c;可用限流来保底。 1.1 Redis的使用场景 根据自己简历上的业务进行回答 缓存穿透、击穿、雪崩、双…...

每日刷题(图论)

P1119 灾后重建 P1119 灾后重建 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路 看数据范围知道需要用到Floyd算法&#xff0c;但是道路是不能直接用的&#xff0c;需要等到连接道路的两个村庄重建好才可以使用&#xff0c;所以这需要按照时间依次加入中转点&#xff0c…...

Requestium - 将Requests和Selenium合并在一起的自动化测试工具

Requests 是 Python 的第三方库&#xff0c;主要用于发送 http 请求&#xff0c;常用于接口自动化测试等。 Selenium 是一个用于 Web 应用程序的自动化测试工具。Selenium 测试直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。 本篇介绍一款将 Requests 和 Seleniu…...

mysql和pg等数据库之间的数据迁移实战分享

mysql和pg等数据库之间的数据迁移是常见的问题&#xff1a;比如一开始使用Oracle&#xff0c;后来想使用mysql&#xff0c;而且需要把Oracle数据库的数据迁移到mysql里面&#xff1b;后期有想使用pg数据库&#xff0c;同时需要把Mysql数据库的数据迁移到pgl里面&#xff0c;等等…...

消息中间件都有哪些

RabbitMQ&#xff1a;这可是一个开源的消息代理软件&#xff0c;也叫消息中间件。它支持多种消息传递协议&#xff0c;可以轻松地在分布式系统中进行可靠的消息传递。 Kafka&#xff1a;Apache Kafka是一个分布式流处理平台&#xff0c;它主要用于处理实时数据流。Kafka的设计初…...

数据结构(3)内核链表

一、内核链表 内核链表是一种在操作系统内核中使用的数据结构&#xff0c;主要用于管理和组织内核对象。它是有头双向链表的一种实现。 内核链表的特点 双向链表: 内核链表的每个节点都包含指向前一个节点和后一个节点的指针&#xff0c;这使得在链表中进行插入和删除操作时更…...

Linux 硬件学习 s3c2440 arm920t蜂鸣器

1.查找手册时钟图&#xff0c;输入12m想要通过pll得到400m的信号 2.对比pll值&#xff0c;找到最近的为405&#xff0c;得到pll中mdiv为127&#xff0c;pdiv为2&#xff0c;sdiv为1 3.想要得到fclk400&#xff0c;hclk100&#xff0c;pclk50&#xff0c;对比分频比例&#xff0…...

提交保存,要做重复请求拦截,避免出现重复保存的问题

**问题&#xff1a;**前端ajax提交数据的时候&#xff0c;当频繁点击的时候&#xff0c;或者两个账号以相同数据创建的时候&#xff0c;会出现问题。 **处理办法&#xff1a;**前端拦截&#xff0c;防止重复提交数据&#xff0c;在上一次请求返回结果之后才允许提交第二次&…...

华为 HCIP-Datacom H12-821 题库 (3)

有需要题库的可以看主页置顶​​​​​​​ 1.运行 OSPF 协议的路由器在交互 DD 报文时&#xff0c;会使用以下哪一个参数选举主从关系&#xff1f; A、接口的 IP 地址 B、接口的 DR 优先级 C、Area ID D、Router ID 答案&#xff1a;D 解析&#xff1a; Router-ID 大的为主&a…...

spring-boot 事件

事件触发时机常用监听器描述ApplicationStartingEvent应用启动时LoggingApplicationListener&#xff1a;决定加载哪个日志系统ApplicationEnvironmentPreparedEvent创建Environment之后BootstrapApplicationListener&#xff1a;加载spring-cloud bootstrap配置文件&#xff1…...

合碳智能 × Milvus:探索化学合成新境界——逆合成路线设计

合碳智能&#xff08;C12.ai&#xff09;成立于2022年&#xff0c;致力于运用AI和具身智能技术&#xff0c;为药物研发实验室提供新一代智能化解决方案&#xff0c;推动实验室从自动化迈向智能化&#xff0c;突破传统实验模式与人员的依赖&#xff0c;解决效率和成本的瓶颈&…...

二分查找 | 二分模板 | 二分题目解析

1.二分查找 二分查找的一个前提就是要保证数组是有序的&#xff08;不准确&#xff09;&#xff01;利用二段性&#xff01; 1.朴素二分模板 朴素二分法的查找中间的值和目标值比较 while(left < right) // 注意是要&#xff1a; < {int mid left (right -left) / 2;…...

uni-app应用更新(Android端)

关于app更新&#xff0c;uni-app官方推荐的是 uni-upgrade-center&#xff0c;看了下比较繁琐&#xff0c;因此这里自己实现检查更新并下载安装的逻辑。 1.界面效果 界面中的弹框和 进度条采用了uView 提供的组件 2.检查更新并下载安装 一、版本信息配置在服务端&#xff0c…...

JavaEE(2):前后端项目之间的交互

现在&#xff0c;在网页中通过超链接&#xff0c;表单就可以向后端发送请求&#xff0c;后端也可以正常响应内容。 以前通过表单访问后端的请求方式称为同步请求 同步请求 当网页与后端交互时&#xff0c;前端不能再进行其他操作 服务器端响应回来的内容&#xff0c;会把整个浏…...

(已开源-CVPR 2024)YOLO-World: Real-Time Open-Vocabulary Object Detection

169期《YOLO-World Real-Time Open-Vocabulary Object Detection》 You Only Look Once (YOLO) 系列检测模型是目前最常用的检测模型之一。然而&#xff0c;它们通常是在预先定义好的目标类别上进行训练&#xff0c;很大程度上限制了它们在开放场景中的可用性。为了解决这一限制…...

Spring6梳理4——SpringIoC容器

以上笔记来源&#xff1a; 尚硅谷Spring零基础入门到进阶&#xff0c;一套搞定spring6全套视频教程&#xff08;源码级讲解&#xff09;https://www.bilibili.com/video/BV1kR4y1b7Qc 目录 4.1 前言 4.2 IoC容器 4.2.1 控制反转(IoC) 4.2.2 依赖注入 4.2.3 IoC容器在Spri…...

SpringBoot2:请求处理原理分析-FORM表单请求接口

一、RESTFUL简介 Rest风格支持&#xff08;使用HTTP请求方式&#xff0c;动词来表示对资源的操作&#xff09; 以前&#xff1a;/getUser 获取用户 /deleteUser 删除用户 /editUser 修改用户 /saveUser 保存用户 现在&#xff1a; /user GET-获取用户 DELETE-删除用户 PUT-修改…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...