当前位置: 首页 > news >正文

1-7 掩膜的运用 opencv树莓派4B 入门系列笔记

目录

一、提前准备

二、代码详解

num_pixels = np.sum(mask == 255)

contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

c = max(contours, key=cv2.contourArea)

x, y, w, h = cv2.boundingRect(c)

M = cv2.moments(contours[0]) if contours else None

cX = int(M["m10"] / M["m00"])

area = cv2.contourArea(contours[0]) if contours else 0

三、运行结果

四、完整代码

五、完整代码贴出


一、提前准备

        1、树莓派4B 及 64位系统

        2、提前安装opencv库 以及 numpy库

        3、保存一张图片

二、代码详解

1、图像覆盖掩膜

# 这行指定了文件的编码格式为utf-8
# coding=utf-8 import cv2
import numpy as np# 使用cv2.imread函数读取指定路径下的图片文件。第二个参数1表示读取彩色图像(BGR格式)
img = cv2.imread('/home/raspberry4B/Pictures/MD.jpg', 1)# 将图像从BGR色彩空间转换为HSV色彩空间。HSV色彩空间更适用于颜色范围检测,因为它基于色调(H)、饱和度(S)和亮度(V)。
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)# 定义一个NumPy数组,表示HSV色彩空间中颜色的下界。这里的数值代表色调、饱和度和亮度的最小值。 
lower_range = np.array([101, 100, 100], dtype=np.uint8)
# 定义一个NumPy数组,表示HSV色彩空间中颜色的上界。这里的数值代表色调、饱和度和亮度的最大值。  
upper_range = np.array([121, 255, 255], dtype=np.uint8)# 使用cv2.inRange函数根据指定的HSV颜色范围创建一个掩码图像。该掩码图像中,属于指定颜色范围的像素值为255(白色),其他像素值为0(黑色)。  
mask = cv2.inRange(hsv, lower_range, upper_range)

2、计算掩膜覆盖的像素

# 计算掩膜覆盖的像素
num_pixels = np.sum(mask == 255)  # 或者 np.count_nonzero(mask)  
print(f"Number of pixels in the mask: {num_pixels}")

num_pixels = np.sum(mask == 255)

  • 功能: 计算掩码图像中像素值为255的总数,即在指定颜色范围内的像素数量。
  • 参数:
    • mask == 255: 生成一个与mask大小相同的布尔数组,其中像素值为255的对应位置为True
  • 结果: 返回符合条件的像素总数。

3、找到最大轮廓

# 使用OpenCV的findContours函数找到轮廓  通过寻找掩膜中所有非零像素的边界,您可以得到这些像素在图像中的位置。
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)   
# 假设我们只关心最大的轮廓(即最大的物体)   
if contours:  c = max(contours, key=cv2.contourArea)  x, y, w, h = cv2.boundingRect(c)  print(f"Bounding box of the object: ({x}, {y}), ({w}, {h})")

contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

  • 功能: 使用cv2.findContours函数在掩码图像中找到轮廓。
  • 参数:
    • mask: 输入的二值图像。
    • cv2.RETR_EXTERNAL: 仅检测外部轮廓,不考虑嵌套轮廓。
    • cv2.CHAIN_APPROX_SIMPLE: 压缩水平、垂直和对角直线段,保留其端点。
  • 结果: 返回的contours是一个包含所有轮廓的列表。

c = max(contours, key=cv2.contourArea)

  • 功能: 找到最大的轮廓,即具有最大面积的轮廓。
  • 参数:
    • contours: 包含所有轮廓的列表。
    • key=cv2.contourArea: 使用轮廓面积作为比较的关键字。

x, y, w, h = cv2.boundingRect(c)

  • 功能: 使用cv2.boundingRect函数为最大的轮廓计算边界框(bounding box)。
  • 参数:
    • c: 最大的轮廓。
  • 结果: 返回边界框的左上角坐标(x, y)及其宽度w和高度h

4、计算掩膜覆盖物体的质心

# 计算掩膜中物体的质心 质心是物体所有像素的加权平均位置
M = cv2.moments(contours[0]) if contours else None  
if M != None:  cX = int(M["m10"] / M["m00"])  cY = int(M["m01"] / M["m00"])  print(f"Centroid of the object: ({cX}, {cY})")

M = cv2.moments(contours[0]) if contours else None

  • 功能: 计算轮廓的几何矩(moments)。
  • 参数:
    • contours[0]: 使用第一个(最大)轮廓。
  • 结果: 返回一个字典,包含计算出的所有几何矩。如果没有轮廓,返回None

cX = int(M["m10"] / M["m00"])

  • 功能: 计算物体的质心(centroid)。
  • 参数:
    • M["m10"]: 几何矩中的m10,即第一阶的x方向矩。
    • M["m00"]: 几何矩中的m00,即零阶矩(面积)。
  • 结果: 计算出质心的x坐标cX

 5、计算掩膜物体的面积

# 计算掩膜中物体的面积 这可以通过计算掩膜中非零像素的数量来实现
area = cv2.contourArea(contours[0]) if contours else 0  
print(f"Area of the object: {area}")

area = cv2.contourArea(contours[0]) if contours else 0

  • 功能: 使用cv2.contourArea函数计算轮廓的面积。
  • 参数:
    • contours[0]: 使用第一个(最大)轮廓。
  • 结果: 返回轮廓的面积。

 6、主函数

# 使用cv2.imshow函数显示掩码图像,窗口标题为'mask'。  
cv2.imshow('mask',mask)
# 使用cv2.imshow函数显示原始图像(经过缩放和色彩空间转换后),窗口标题为'image'。  
cv2.imshow('image', img)while(1):
#等待用户按键,按下‘q’就释放资源退出程序key=cv2.waitKey(1)if key&0XFF==ord('q'):breakcv2.destroyAllWindows()

三、运行结果

四、完整代码

# 这行指定了文件的编码格式为utf-8
# coding=utf-8 import cv2
import numpy as np# 使用cv2.imread函数读取指定路径下的图片文件。第二个参数1表示读取彩色图像(BGR格式)
img = cv2.imread('/home/raspberry4B/Pictures/MD.jpg', 1)# 使用cv2.resize函数调整图像大小。这里,目标宽度和高度被设置为(0,0),表示将按照给定的缩放因子fx和fy来缩放图像。  
# fx=0.2和fy=0.2表示图像在水平和垂直方向上都将缩小到原来的20%。 
#img = cv2.resize(img, (0,0), fx=0.2, fy=0.2)# 将图像从BGR色彩空间转换为HSV色彩空间。HSV色彩空间更适用于颜色范围检测,因为它基于色调(H)、饱和度(S)和亮度(V)。
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)# 定义一个NumPy数组,表示HSV色彩空间中颜色的下界。这里的数值代表色调、饱和度和亮度的最小值。 
lower_range = np.array([101, 100, 100], dtype=np.uint8)
# 定义一个NumPy数组,表示HSV色彩空间中颜色的上界。这里的数值代表色调、饱和度和亮度的最大值。  
upper_range = np.array([121, 255, 255], dtype=np.uint8)# 使用cv2.inRange函数根据指定的HSV颜色范围创建一个掩码图像。该掩码图像中,属于指定颜色范围的像素值为255(白色),其他像素值为0(黑色)。  
mask = cv2.inRange(hsv, lower_range, upper_range)# 计算掩膜覆盖的像素
num_pixels = np.sum(mask == 255)  # 或者 np.count_nonzero(mask)  
print(f"Number of pixels in the mask: {num_pixels}")# 使用OpenCV的findContours函数找到轮廓  通过寻找掩膜中所有非零像素的边界,您可以得到这些像素在图像中的位置。
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)   
# 假设我们只关心最大的轮廓(即最大的物体)   
if contours:  c = max(contours, key=cv2.contourArea)  x, y, w, h = cv2.boundingRect(c)  print(f"Bounding box of the object: ({x}, {y}), ({w}, {h})")# 计算掩膜中物体的质心 质心是物体所有像素的加权平均位置
M = cv2.moments(contours[0]) if contours else None  
if M != None:  cX = int(M["m10"] / M["m00"])  cY = int(M["m01"] / M["m00"])  print(f"Centroid of the object: ({cX}, {cY})")# 计算掩膜中物体的面积 这可以通过计算掩膜中非零像素的数量来实现
area = cv2.contourArea(contours[0]) if contours else 0  
print(f"Area of the object: {area}")# 使用cv2.imshow函数显示掩码图像,窗口标题为'mask'。  
cv2.imshow('mask',mask)
# 使用cv2.imshow函数显示原始图像(经过缩放和色彩空间转换后),窗口标题为'image'。  
cv2.imshow('image', img)while(1):
#等待用户按键,按下‘q’就释放资源退出程序key=cv2.waitKey(1)if key&0XFF==ord('q'):breakcv2.destroyAllWindows()

五、完整代码贴出

(持续更新中)opencv树莓派4B入门系列笔记6~10完整工程源码资源-CSDN文库

持续更新中……

相关文章:

1-7 掩膜的运用 opencv树莓派4B 入门系列笔记

目录 一、提前准备 二、代码详解 num_pixels np.sum(mask 255) contours, _ cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) c max(contours, keycv2.contourArea) x, y, w, h cv2.boundingRect(c) M cv2.moments(contours[0]) if contours…...

EG边缘计算网关连接华为云物联网平台(MQTT协议)

需求概述 实现一个流程:EG8200mini采集Modbus RTU数据,通过MQTT协议连接华为云物联网平台 Modbus RTU采集此处不做过多赘述,可参考其他案例(串口读取Modbus传感器数据)介绍。下文默认已经采集到Modbus RTU数据。 要…...

List中常见的方法和五种遍历方式

有序&#xff1a;存取的顺序一致 有索引&#xff1a;可以通过索引操作元素 可重复&#xff1a;存储的元素可以重复 package mylist;import java.util.ArrayList; import java.util.List;public class A01_LIstDemo1 {public static void main(String[] args) {List<String…...

华为 HCIP-Datacom H12-821 题库 (8)

有需要题库的可以看主页置顶 1.在 DHCP 运行过程中&#xff0c;如果客户端 IP 地址在相约过去 87.5%还没有完成续约的话&#xff0c;客户将发送什么报文进行再次续约&#xff1f; A、DHCP discover 广播报文 B、DHCP release 单播报文 C、DHCP request 广播报文 D、DHCP reques…...

12. GIS地图制图工程师岗位职责、技术要求和常见面试题

本系列文章目录&#xff1a; 1. GIS开发工程师岗位职责、技术要求和常见面试题 2. GIS数据工程师岗位职责、技术要求和常见面试题 3. GIS后端工程师岗位职责、技术要求和常见面试题 4. GIS前端工程师岗位职责、技术要求和常见面试题 5. GIS工程师岗位职责、技术要求和常见面试…...

ORACLE 统计信息的备份与恢复

备份 --需要先创建统计信息基础表 exec dbms_stats.create_stat_table(USER1,STAT_TIMESTAMP); --导出某个用户的所有统计信息 exec dbms_stats.export_schema_stats(USER1,STAT_TIMESTAMP);--测试(插入100条&#xff0c;更新统计信息&#xff0c;略) select num_rows,last_ana…...

2. GIS数据工程师岗位职责、技术要求和常见面试题

本系列文章目录&#xff1a; 1. GIS开发工程师岗位职责、技术要求和常见面试题 2. GIS数据工程师岗位职责、技术要求和常见面试题 3. GIS后端工程师岗位职责、技术要求和常见面试题 4. GIS前端工程师岗位职责、技术要求和常见面试题 5. GIS工程师岗位职责、技术要求和常见面试…...

Spark MLlib模型训练—文本算法 LDA(Latent Dirichlet Allocation)

Spark MLlib模型训练—文本算法 LDA(Latent Dirichlet Allocation) Latent Dirichlet Allocation(LDA)是一种用于主题建模的生成式概率模型,广泛应用于文本分析和自然语言处理。LDA 的目标是从一组文档中发现潜在的主题,并将每个文档表示为这些主题的概率分布。它通过推断…...

C++ ─── List的模拟实现

目录 ​编辑 一&#xff0c; List的模拟实现 二&#xff0c;代码实现 三、list和vector的区别 一&#xff0c; List的模拟实现 List 是一个双向循环链表,由于List的节点不连续&#xff0c;不能用节点指针直接作为迭代器&#xff0c;因此我们要对结点指针封装&#xff0c;来…...

Spring Boot详解

好的&#xff01;Spring Boot 是一个基于 Spring 框架的项目&#xff0c;它为简化配置、快速启动项目而生。它使得构建独立运行、生产级别的 Spring 应用变得非常简单&#xff0c;让开发者专注于业务逻辑而不再被繁琐的配置所困扰。接下来&#xff0c;我将从以下几个方面为你详…...

Proxfier+burpsuite抓包配置问题

1、burp证书配置 导出证书 后缀为cer 打开浏览器设置 搜索证书--》点安全 管理证书 在圈起来的三个地方添加证书 2、Proxifer配置 配置代理服务器 配置ip和port 配置代理规则 注意画圈部分...

sqli-lab靶场学习(一)——Less1-4

前言 最近一段时间想切入安全领域&#xff0c;因为本身有做数据库运维工作&#xff0c;就打算从sql注入方向切入。而sql注入除了学习日常书本上的概念外&#xff0c;需要有个实践的环境&#xff0c;刚好看到sqli-lab这个靶场&#xff0c;就打算先用这个来学习。 安装部署 网上…...

el-select如何同时获取value和label?

在element ui 中 下拉框默认获取下拉框value的值&#xff0c;但是有时候根据 业务需求&#xff0c;我们需要label值也发送给后端&#xff0c;在这提供一下获取value、和label 的方式 1、在给el-option绑定:value值时使用对象的方式&#xff0c;将value和label同时绑定到:value…...

1.初识ChatGPT:AI聊天机器人的革命(1/10)

引言 在当今的数字化世界中&#xff0c;人工智能&#xff08;AI&#xff09;正以其独特的方式重塑我们的生活和工作。其中&#xff0c;AI聊天机器人作为人机交互的前沿技术&#xff0c;已经成为企业与客户沟通、提供个性化服务的重要工具。这些机器人通过模拟人类的对话方式&a…...

API安全 | 发现API的5个小tips

在安全测试目标时&#xff0c;最有趣的测试部分是它的 API。API 是动态的&#xff0c;它们比应用程序的其他部分更新得更频繁&#xff0c;并且负责许多后端繁重的工作。在现代应用程序中&#xff0c;我们通常会看到 REST API&#xff0c;但也会看到其他形式&#xff0c;例如 Gr…...

数据结构---单向链表

单向链表 //链表的创建 Link_t *create_link() {Link_t *plink malloc(sizeof(Link_t));if(NULL plink){perror("fail plink");return NULL;}plink->phead NULL;plink->clen 0;return plink; } //头插 int push_link_head(Link_t *plink, DataType data…...

基于STM32设计的ECG+PPG人体参数测量系统(华为云IOT)(217)

文章目录 一、前言1.1 项目介绍【1】开发背景【2】项目实现的功能【3】项目硬件模块组成1.2 设计思路【1】整体设计思路【2】整体构架【3】上位机开发思路【4】ESP8266工作模式配置1.3 项目开发背景【1】选题的意义【2】可行性分析【3】参考文献【4】摘要【5】项目背景1.4 开发…...

SpringBoot教程(十五) | SpringBoot集成RabbitMq(死信队列、延迟队列)

SpringBoot教程&#xff08;十五&#xff09; | SpringBoot集成RabbitMq&#xff08;死信队列、延迟队列&#xff09; &#xff08;一&#xff09;死信队列使用场景具体用法前提示例: &#xff08;二&#xff09;延迟队列使用场景方法一&#xff1a;通过死亡队列实现方法二&…...

Dubbo依赖包

Dubbo 是一个高性能的 RPC 框架&#xff0c;用于构建分布式服务治理系统。要使用 Dubbo&#xff0c;项目中需要引入一些关键的依赖包。这些依赖包提供了 Dubbo 的核心功能、服务注册与发现、网络通信、序列化等能力。 一、Dubbo 核心依赖包 Dubbo 的核心依赖包包含了实现 RPC…...

webGIS后端程序员学习路线

webGIS后端程序员学习路线 1. GIS 基础知识 学习要点&#xff1a; 学习资源&#xff1a; 2. 后端编程基础 学习要点&#xff1a; 学习资源&#xff1a; 3. 地理数据库&#xff08;Spatial Database&#xff09; 学习要点&#xff1a; 学习资源&#xff1a; 4. 空间数…...

OpenCV绘图函数(15)图像上绘制矩形函数 rectangle()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 绘制一个简单的、粗的或填充的直立矩形。 这个函数 cv::rectangle 绘制一个矩形轮廓或一个填充的矩形&#xff0c;其两个相对的顶点分别是 pt1 和…...

从零开始,认识游戏设计师(4)体验源于设计师②

认真并仔细地揣摩你的想法 了解自己的感受并不是一件简单的事情&#xff0c;作为设计师&#xff0c;我觉得比了解玩家总体感觉的技能更重要的是你能清楚知道描述自己感受。 试想一下&#xff0c;你是否能准确描述你喜欢什么&#xff0c;你讨厌什么&#xff0c;以及为什么这样…...

周末总结(2024/09/07)

工作 人际关系核心实践&#xff1a; 要学会随时回应别人的善意&#xff0c;执行时间控制在5分钟以内 坚持每天早会打招呼 遇到接不住的话题时拉低自己&#xff0c;抬高别人(无阴阳气息) 朋友圈点赞控制在5min以内&#xff0c;职场社交不要放在5min以外 职场的人际关系在面对利…...

MySQL数据库的SQL注入漏洞解析

说明:本文仅是用于学习分析自己搭建的SQL漏洞内容和原理,请勿用在非法途径上,违者后果自负,与笔者无关;本文开始前请认真详细学习《‌中华人民共和国网络安全法》‌及其相关法规内容【学法时习之丨网络安全在身边一图了解网络安全法_中央网络安全和信息化委员会办公室】 …...

Redis进阶(七):分布式锁

在分布式系统下&#xff0c;涉及到多个节点访问同一个公共资源的情况&#xff0c;此时需要通过 锁 进行互斥控制&#xff1a;避免出现 线程安全问题。 1.分布式锁的基本实现 超卖问题&#xff1a; 解决: 采用redis实现分布式锁 可用采取&#xff1a;在购票的时候&#xff0…...

Python 中考虑 concurrent.futures 实现真正的并行计算

Python 中考虑 concurrent.futures 实现真正的并行计算 思考&#xff0c;如何将代码所要执行的计算任务划分成多个独立的部分并在各自的核心上面平行地运行。 Python 的全局解释器锁&#xff08;global interpreter lock&#xff0c;GIL&#xff09;导致没办法用线程来实现真…...

【C++多线程编程】 线程安全与对象生命周期管理

目录 类的线程安全 实现线程安全 构造函数在多线程中的安全性 析构函数多线程环境的安全 智能指针实现多线程安全 shared_ptr 非完全线程安全 shared_ptr可能导致对象生命周期延长 const引用可以减少传递shared_ptr开销 shared_ptr 智能指针块模块的优点 析构所在线程…...

【系统架构设计师-2024年-上半年】综合知识-答案及详解

更多内容请见: 备考系统架构设计师-核心总结索引 文章目录 【第1题】【第2题】【第3题】【第4题】【第5题】【第6题】【第7题】【第8题】【第9题】【第10题】【第11题】【第12题】【第13题】【第14题】【第15题】【第16~17题】【第18~19题】【第20~21题】【第22题】【第23题】…...

MATLAB 中的对数计算

在 MATLAB 中&#xff0c;计算对数是进行数学分析和科学计算的常见需求。对数运算在数据分析、信号处理和控制系统中都有广泛应用。本篇博客将详细介绍如何在 MATLAB 中进行对数计算&#xff0c;包括自然对数、常用对数以及任意底数的对数。 1. 自然对数&#xff08;以 e 为底…...

详解 HTTPS 与 TLS证书链校验

一文详解 HTTPS 与 TLS证书链校验_证书链怎么验证-CSDN博客 深入浅出 SSL/CA 证书及其相关证书文件&#xff08;pem、crt、cer、key、csr&#xff09; https://zhuanlan.zhihu.com/p/702745054...