1-7 掩膜的运用 opencv树莓派4B 入门系列笔记
目录
一、提前准备
二、代码详解
num_pixels = np.sum(mask == 255)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
c = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(c)
M = cv2.moments(contours[0]) if contours else None
cX = int(M["m10"] / M["m00"])
area = cv2.contourArea(contours[0]) if contours else 0
三、运行结果
四、完整代码
五、完整代码贴出
一、提前准备
1、树莓派4B 及 64位系统
2、提前安装opencv库 以及 numpy库
3、保存一张图片
二、代码详解
1、图像覆盖掩膜
# 这行指定了文件的编码格式为utf-8
# coding=utf-8 import cv2
import numpy as np# 使用cv2.imread函数读取指定路径下的图片文件。第二个参数1表示读取彩色图像(BGR格式)
img = cv2.imread('/home/raspberry4B/Pictures/MD.jpg', 1)# 将图像从BGR色彩空间转换为HSV色彩空间。HSV色彩空间更适用于颜色范围检测,因为它基于色调(H)、饱和度(S)和亮度(V)。
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)# 定义一个NumPy数组,表示HSV色彩空间中颜色的下界。这里的数值代表色调、饱和度和亮度的最小值。
lower_range = np.array([101, 100, 100], dtype=np.uint8)
# 定义一个NumPy数组,表示HSV色彩空间中颜色的上界。这里的数值代表色调、饱和度和亮度的最大值。
upper_range = np.array([121, 255, 255], dtype=np.uint8)# 使用cv2.inRange函数根据指定的HSV颜色范围创建一个掩码图像。该掩码图像中,属于指定颜色范围的像素值为255(白色),其他像素值为0(黑色)。
mask = cv2.inRange(hsv, lower_range, upper_range)
2、计算掩膜覆盖的像素
# 计算掩膜覆盖的像素
num_pixels = np.sum(mask == 255) # 或者 np.count_nonzero(mask)
print(f"Number of pixels in the mask: {num_pixels}")
num_pixels = np.sum(mask == 255)
- 功能: 计算掩码图像中像素值为255的总数,即在指定颜色范围内的像素数量。
- 参数:
mask == 255
: 生成一个与mask
大小相同的布尔数组,其中像素值为255的对应位置为True
。
- 结果: 返回符合条件的像素总数。
3、找到最大轮廓
# 使用OpenCV的findContours函数找到轮廓 通过寻找掩膜中所有非零像素的边界,您可以得到这些像素在图像中的位置。
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 假设我们只关心最大的轮廓(即最大的物体)
if contours: c = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(c) print(f"Bounding box of the object: ({x}, {y}), ({w}, {h})")
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- 功能: 使用
cv2.findContours
函数在掩码图像中找到轮廓。 - 参数:
mask
: 输入的二值图像。cv2.RETR_EXTERNAL
: 仅检测外部轮廓,不考虑嵌套轮廓。cv2.CHAIN_APPROX_SIMPLE
: 压缩水平、垂直和对角直线段,保留其端点。
- 结果: 返回的
contours
是一个包含所有轮廓的列表。
c = max(contours, key=cv2.contourArea)
- 功能: 找到最大的轮廓,即具有最大面积的轮廓。
- 参数:
contours
: 包含所有轮廓的列表。key=cv2.contourArea
: 使用轮廓面积作为比较的关键字。
x, y, w, h = cv2.boundingRect(c)
- 功能: 使用
cv2.boundingRect
函数为最大的轮廓计算边界框(bounding box)。 - 参数:
c
: 最大的轮廓。
- 结果: 返回边界框的左上角坐标
(x, y)
及其宽度w
和高度h
。
4、计算掩膜覆盖物体的质心
# 计算掩膜中物体的质心 质心是物体所有像素的加权平均位置
M = cv2.moments(contours[0]) if contours else None
if M != None: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) print(f"Centroid of the object: ({cX}, {cY})")
M = cv2.moments(contours[0]) if contours else None
- 功能: 计算轮廓的几何矩(moments)。
- 参数:
contours[0]
: 使用第一个(最大)轮廓。
- 结果: 返回一个字典,包含计算出的所有几何矩。如果没有轮廓,返回
None
。
cX = int(M["m10"] / M["m00"])
- 功能: 计算物体的质心(centroid)。
- 参数:
M["m10"]
: 几何矩中的m10
,即第一阶的x方向矩。M["m00"]
: 几何矩中的m00
,即零阶矩(面积)。
- 结果: 计算出质心的x坐标
cX
。
5、计算掩膜物体的面积
# 计算掩膜中物体的面积 这可以通过计算掩膜中非零像素的数量来实现
area = cv2.contourArea(contours[0]) if contours else 0
print(f"Area of the object: {area}")
area = cv2.contourArea(contours[0]) if contours else 0
- 功能: 使用
cv2.contourArea
函数计算轮廓的面积。 - 参数:
contours[0]
: 使用第一个(最大)轮廓。
- 结果: 返回轮廓的面积。
6、主函数
# 使用cv2.imshow函数显示掩码图像,窗口标题为'mask'。
cv2.imshow('mask',mask)
# 使用cv2.imshow函数显示原始图像(经过缩放和色彩空间转换后),窗口标题为'image'。
cv2.imshow('image', img)while(1):
#等待用户按键,按下‘q’就释放资源退出程序key=cv2.waitKey(1)if key&0XFF==ord('q'):breakcv2.destroyAllWindows()
三、运行结果
四、完整代码
# 这行指定了文件的编码格式为utf-8
# coding=utf-8 import cv2
import numpy as np# 使用cv2.imread函数读取指定路径下的图片文件。第二个参数1表示读取彩色图像(BGR格式)
img = cv2.imread('/home/raspberry4B/Pictures/MD.jpg', 1)# 使用cv2.resize函数调整图像大小。这里,目标宽度和高度被设置为(0,0),表示将按照给定的缩放因子fx和fy来缩放图像。
# fx=0.2和fy=0.2表示图像在水平和垂直方向上都将缩小到原来的20%。
#img = cv2.resize(img, (0,0), fx=0.2, fy=0.2)# 将图像从BGR色彩空间转换为HSV色彩空间。HSV色彩空间更适用于颜色范围检测,因为它基于色调(H)、饱和度(S)和亮度(V)。
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)# 定义一个NumPy数组,表示HSV色彩空间中颜色的下界。这里的数值代表色调、饱和度和亮度的最小值。
lower_range = np.array([101, 100, 100], dtype=np.uint8)
# 定义一个NumPy数组,表示HSV色彩空间中颜色的上界。这里的数值代表色调、饱和度和亮度的最大值。
upper_range = np.array([121, 255, 255], dtype=np.uint8)# 使用cv2.inRange函数根据指定的HSV颜色范围创建一个掩码图像。该掩码图像中,属于指定颜色范围的像素值为255(白色),其他像素值为0(黑色)。
mask = cv2.inRange(hsv, lower_range, upper_range)# 计算掩膜覆盖的像素
num_pixels = np.sum(mask == 255) # 或者 np.count_nonzero(mask)
print(f"Number of pixels in the mask: {num_pixels}")# 使用OpenCV的findContours函数找到轮廓 通过寻找掩膜中所有非零像素的边界,您可以得到这些像素在图像中的位置。
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 假设我们只关心最大的轮廓(即最大的物体)
if contours: c = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(c) print(f"Bounding box of the object: ({x}, {y}), ({w}, {h})")# 计算掩膜中物体的质心 质心是物体所有像素的加权平均位置
M = cv2.moments(contours[0]) if contours else None
if M != None: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) print(f"Centroid of the object: ({cX}, {cY})")# 计算掩膜中物体的面积 这可以通过计算掩膜中非零像素的数量来实现
area = cv2.contourArea(contours[0]) if contours else 0
print(f"Area of the object: {area}")# 使用cv2.imshow函数显示掩码图像,窗口标题为'mask'。
cv2.imshow('mask',mask)
# 使用cv2.imshow函数显示原始图像(经过缩放和色彩空间转换后),窗口标题为'image'。
cv2.imshow('image', img)while(1):
#等待用户按键,按下‘q’就释放资源退出程序key=cv2.waitKey(1)if key&0XFF==ord('q'):breakcv2.destroyAllWindows()
五、完整代码贴出
(持续更新中)opencv树莓派4B入门系列笔记6~10完整工程源码资源-CSDN文库
持续更新中……
相关文章:

1-7 掩膜的运用 opencv树莓派4B 入门系列笔记
目录 一、提前准备 二、代码详解 num_pixels np.sum(mask 255) contours, _ cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) c max(contours, keycv2.contourArea) x, y, w, h cv2.boundingRect(c) M cv2.moments(contours[0]) if contours…...

EG边缘计算网关连接华为云物联网平台(MQTT协议)
需求概述 实现一个流程:EG8200mini采集Modbus RTU数据,通过MQTT协议连接华为云物联网平台 Modbus RTU采集此处不做过多赘述,可参考其他案例(串口读取Modbus传感器数据)介绍。下文默认已经采集到Modbus RTU数据。 要…...

List中常见的方法和五种遍历方式
有序:存取的顺序一致 有索引:可以通过索引操作元素 可重复:存储的元素可以重复 package mylist;import java.util.ArrayList; import java.util.List;public class A01_LIstDemo1 {public static void main(String[] args) {List<String…...
华为 HCIP-Datacom H12-821 题库 (8)
有需要题库的可以看主页置顶 1.在 DHCP 运行过程中,如果客户端 IP 地址在相约过去 87.5%还没有完成续约的话,客户将发送什么报文进行再次续约? A、DHCP discover 广播报文 B、DHCP release 单播报文 C、DHCP request 广播报文 D、DHCP reques…...

12. GIS地图制图工程师岗位职责、技术要求和常见面试题
本系列文章目录: 1. GIS开发工程师岗位职责、技术要求和常见面试题 2. GIS数据工程师岗位职责、技术要求和常见面试题 3. GIS后端工程师岗位职责、技术要求和常见面试题 4. GIS前端工程师岗位职责、技术要求和常见面试题 5. GIS工程师岗位职责、技术要求和常见面试…...

ORACLE 统计信息的备份与恢复
备份 --需要先创建统计信息基础表 exec dbms_stats.create_stat_table(USER1,STAT_TIMESTAMP); --导出某个用户的所有统计信息 exec dbms_stats.export_schema_stats(USER1,STAT_TIMESTAMP);--测试(插入100条,更新统计信息,略) select num_rows,last_ana…...

2. GIS数据工程师岗位职责、技术要求和常见面试题
本系列文章目录: 1. GIS开发工程师岗位职责、技术要求和常见面试题 2. GIS数据工程师岗位职责、技术要求和常见面试题 3. GIS后端工程师岗位职责、技术要求和常见面试题 4. GIS前端工程师岗位职责、技术要求和常见面试题 5. GIS工程师岗位职责、技术要求和常见面试…...
Spark MLlib模型训练—文本算法 LDA(Latent Dirichlet Allocation)
Spark MLlib模型训练—文本算法 LDA(Latent Dirichlet Allocation) Latent Dirichlet Allocation(LDA)是一种用于主题建模的生成式概率模型,广泛应用于文本分析和自然语言处理。LDA 的目标是从一组文档中发现潜在的主题,并将每个文档表示为这些主题的概率分布。它通过推断…...

C++ ─── List的模拟实现
目录 编辑 一, List的模拟实现 二,代码实现 三、list和vector的区别 一, List的模拟实现 List 是一个双向循环链表,由于List的节点不连续,不能用节点指针直接作为迭代器,因此我们要对结点指针封装,来…...
Spring Boot详解
好的!Spring Boot 是一个基于 Spring 框架的项目,它为简化配置、快速启动项目而生。它使得构建独立运行、生产级别的 Spring 应用变得非常简单,让开发者专注于业务逻辑而不再被繁琐的配置所困扰。接下来,我将从以下几个方面为你详…...

Proxfier+burpsuite抓包配置问题
1、burp证书配置 导出证书 后缀为cer 打开浏览器设置 搜索证书--》点安全 管理证书 在圈起来的三个地方添加证书 2、Proxifer配置 配置代理服务器 配置ip和port 配置代理规则 注意画圈部分...

sqli-lab靶场学习(一)——Less1-4
前言 最近一段时间想切入安全领域,因为本身有做数据库运维工作,就打算从sql注入方向切入。而sql注入除了学习日常书本上的概念外,需要有个实践的环境,刚好看到sqli-lab这个靶场,就打算先用这个来学习。 安装部署 网上…...
el-select如何同时获取value和label?
在element ui 中 下拉框默认获取下拉框value的值,但是有时候根据 业务需求,我们需要label值也发送给后端,在这提供一下获取value、和label 的方式 1、在给el-option绑定:value值时使用对象的方式,将value和label同时绑定到:value…...

1.初识ChatGPT:AI聊天机器人的革命(1/10)
引言 在当今的数字化世界中,人工智能(AI)正以其独特的方式重塑我们的生活和工作。其中,AI聊天机器人作为人机交互的前沿技术,已经成为企业与客户沟通、提供个性化服务的重要工具。这些机器人通过模拟人类的对话方式&a…...

API安全 | 发现API的5个小tips
在安全测试目标时,最有趣的测试部分是它的 API。API 是动态的,它们比应用程序的其他部分更新得更频繁,并且负责许多后端繁重的工作。在现代应用程序中,我们通常会看到 REST API,但也会看到其他形式,例如 Gr…...

数据结构---单向链表
单向链表 //链表的创建 Link_t *create_link() {Link_t *plink malloc(sizeof(Link_t));if(NULL plink){perror("fail plink");return NULL;}plink->phead NULL;plink->clen 0;return plink; } //头插 int push_link_head(Link_t *plink, DataType data…...
基于STM32设计的ECG+PPG人体参数测量系统(华为云IOT)(217)
文章目录 一、前言1.1 项目介绍【1】开发背景【2】项目实现的功能【3】项目硬件模块组成1.2 设计思路【1】整体设计思路【2】整体构架【3】上位机开发思路【4】ESP8266工作模式配置1.3 项目开发背景【1】选题的意义【2】可行性分析【3】参考文献【4】摘要【5】项目背景1.4 开发…...
SpringBoot教程(十五) | SpringBoot集成RabbitMq(死信队列、延迟队列)
SpringBoot教程(十五) | SpringBoot集成RabbitMq(死信队列、延迟队列) (一)死信队列使用场景具体用法前提示例: (二)延迟队列使用场景方法一:通过死亡队列实现方法二&…...
Dubbo依赖包
Dubbo 是一个高性能的 RPC 框架,用于构建分布式服务治理系统。要使用 Dubbo,项目中需要引入一些关键的依赖包。这些依赖包提供了 Dubbo 的核心功能、服务注册与发现、网络通信、序列化等能力。 一、Dubbo 核心依赖包 Dubbo 的核心依赖包包含了实现 RPC…...
webGIS后端程序员学习路线
webGIS后端程序员学习路线 1. GIS 基础知识 学习要点: 学习资源: 2. 后端编程基础 学习要点: 学习资源: 3. 地理数据库(Spatial Database) 学习要点: 学习资源: 4. 空间数…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...