多线程篇(阻塞队列- PriorityBlockingQueue)(持续更新迭代)
目录
一、简介
二、类图
三、源码解析
1. 字段讲解
2. 构造方法
3. 入队方法
put
浮调整比较器方法的实现
入队图解
4. 出队方法
take
dequeue
下沉调整比较器方法的实现
出队图解
四、总结
一、简介
PriorityBlockingQueue队列是 JDK1.5 的时候出来的一个阻塞队列。但是该队列入队的时候是不会阻塞的,
永远会加到队尾。
下面我们介绍下它的几个特点:
- PriorityBlockingQueue 和 ArrayBlockingQueue 一样是基于数组实现的,但后者在初始化时需要指定长
度,前者默认长度是 11。
- 该队列可以说是真正的无界队列,它在队列满的时候会进行扩容,而前面说的无界阻塞队列其实都有有界,只
是界限太大可以忽略(最大值是 2147483647)
- 该队列属于权重队列,可以理解为它可以进行排序,但是排序不是从小到大排或从大到小排,是基于数组的堆
结构(具体如何排下面会进行分析)
- 出队方式和前面的也不同,是根据权重来进行出队,和前面所说队列中那种先进先出或者先进后出方式不同。
- 其存入的元素必须实现Comparator,或者在创建队列的时候自定义Comparator
注意:
- 堆结构实际上是一种完全二叉树,建议学习前了解一下二叉树。
- 堆又分为大顶堆和小顶堆。大顶堆中第一个元素肯定是所有元素中最大的,小顶堆中第一个元素是所有元素中
最小的。
二、类图

三、源码解析
1. 字段讲解
从下面的字段我们可以知道,该队列可以排序,使用显示锁来保证操作的原子性,
在空队列时,出队线程会堵塞等。
/*** 默认数组长度*/private static final int DEFAULT_INITIAL_CAPACITY = 11;/*** 最大达容量,分配时超出可能会出现 OutOfMemoryError 异常*/private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;/*** 队列,存储我们的元素*/private transient Object[] queue;/*** 队列长度*/private transient int size;/*** 比较器,入队进行权重的比较*/private transient Comparator<? super E> comparator;/*** 显示锁*/private final ReentrantLock lock;/*** 空队列时进行线程阻塞的 Condition 对象*/private final Condition notEmpty;
2. 构造方法
/*** 默认构造,使用长度为 11 的数组,比较器为空*/public PriorityBlockingQueue() {this(DEFAULT_INITIAL_CAPACITY, null);}/*** 自定义数据长度构造,比较器为空*/public PriorityBlockingQueue(int initialCapacity) {this(initialCapacity, null);}/*** 自定义数组长度,可以自定义比较器*/public PriorityBlockingQueue(int initialCapacity,Comparator<? super E> comparator) {if (initialCapacity < 1)throw new IllegalArgumentException();this.lock = new ReentrantLock();this.notEmpty = lock.newCondition();this.comparator = comparator;this.queue = new Object[initialCapacity];}
3. 入队方法
put
入队方法,下面可以看到 put 方法最终会调用 offer 方法,所以我们只看 offer 方法即可。
public void put(E e) {offer(e); // never need to block}public boolean offer(E e) {//判断是否为空if (e == null)throw new NullPointerException();//显示锁final ReentrantLock lock = this.lock;lock.lock();//定义临时对象int n, cap;Object[] array;//判断数组是否满了while ((n = size) >= (cap = (array = queue).length))//数组扩容tryGrow(array, cap);try {//拿到比较器Comparator<? super E> cmp = comparator;//判断是否有自定义比较器if (cmp == null)//堆上浮siftUpComparable(n, e, array);else//使用自定义比较器进行堆上浮siftUpUsingComparator(n, e, array, cmp);//队列长度 +1size = n + 1;//唤醒休眠的出队线程notEmpty.signal();} finally {//释放锁lock.unlock();}return true;}
浮调整比较器方法的实现
private static <T> void siftUpComparable(int k, T x, Object[] array) {Comparable<? super T> key = (Comparable<? super T>) x;while (k > 0) {//无符号向左移,目的是找到放入位置的父节点int parent = (k - 1) >>> 1;//拿到父节点的值Object e = array[parent];//比较是否大于该元素,不大于就没比较交换if (key.compareTo((T) e) >= 0)break;//以下都是元素位置交换array[k] = e;k = parent;}array[k] = key;}
根据上面的代码,可以看出这是完全二叉树在进行上浮调整。调整入队的元素,找出最小的,将元素排列有序化。
简单理解就是:父节点元素值一定要比它的子节点得小,如果父节点大于子节点了,那就两者位置进行交换。
入队图解
说的可能很模糊,我们先写个 demo,根据 demo 来进行图解分析:
public class TestPriorityBlockingQueue {public static void main(String[] args) throws InterruptedException {PriorityBlockingQueue<Integer> concurrentLinkedQueue = new PriorityBlockingQueue<Integer>();concurrentLinkedQueue.offer(10);concurrentLinkedQueue.offer(20);concurrentLinkedQueue.offer(5);concurrentLinkedQueue.offer(1);concurrentLinkedQueue.offer(25);concurrentLinkedQueue.offer(30);//输出元素排列concurrentLinkedQueue.stream().forEach(e-> System.out.print(e+" "));//取出元素Integer take = concurrentLinkedQueue.take();System.out.println();concurrentLinkedQueue.stream().forEach(e-> System.out.print(e+" "));}
}
上面可以看出,我们要入队的元素是 [10,20,5,1,21,30],接下来我们用图来演示一步步入队情况。
队列初始化时:

这时,我们开始将元素 元素 10 入队,并用二叉树辅助理解:

我们在将元素 20 入队:

将元素 5 入队后发现父节点大于子节点,这时需要进行上浮调整


开始进行上浮调整,将元素 10 和元素 5进行位置调换,结果如下:


接着将元素 1 入队后发现父节点大于子节点,继续进行调整:


第一次调整将元素 20 和元素 1 进行位置交换,交换完毕后结果如下:


交换完毕后,我们发现父节点的元素值还是大于子节点,说明还需要进行一次交换,最后交换结果如下:


接下来将元素 25 和 30 入队,结果如下:


注:
最小堆的的顶端一定是元素值最小的那个。
4. 出队方法
take
出队方法,该方法会阻塞
public E take() throws InterruptedException {//显示锁final ReentrantLock lock = this.lock;//可中断锁lock.lockInterruptibly();//结果接受对象E result;try {//判读队列是否为空while ( (result = dequeue()) == null)//线程阻塞notEmpty.await();} finally {lock.unlock();}return result;
}
dequeue
具体出队方法的实现
private E dequeue() {//长度减少 1int n = size - 1;//判断队列中是否又元素if (n < 0)return null;else {//队列对象Object[] array = queue;//取出第一个元素E result = (E) array[0];//拿出最后一个元素E x = (E) array[n];//置空array[n] = null;Comparator<? super E> cmp = comparator;if (cmp == null)//下沉调整siftDownComparable(0, x, array, n);elsesiftDownUsingComparator(0, x, array, n, cmp);//成功则减少队列中的元素数量size = n;return result;}
}
总体就是找到父节点与两个子节点中最小的一个节点,然后进行交换位置,不断重复,由上而下的交换。
下沉调整比较器方法的实现
private static <T> void siftDownComparable(int k, T x, Object[] array,int n) {//判断队列长度if (n > 0) {Comparable<? super T> key = (Comparable<? super T>)x;//找到队列最后一个元素的父节点的索引。//如下图最大元素是30 父节点是 10,对于索引是 2int half = n >>> 1; // loop while a non-leafwhile (k < half) {//拿到 k 节点下的左子节点int child = (k << 1) + 1; // assume left child is least//取得子节点对应的值Object c = array[child];//取得 k 右子节点的索引int right = child + 1;//比较右节点的索引是否小于队列长度和左右子节点的值进行比较if (right < n &&((Comparable<? super T>) c).compareTo((T) array[right]) > 0)c = array[child = right];//比较父节点值是否大于子节点if (key.compareTo((T) c) <= 0)break;//下面都是元素替换array[k] = c;k = child;}array[k] = key;}
}
出队图解


这时,我们需要从队列中取出第一个元素 1,元素 1 取出时会与队列中最后一个元素进行交换,并将最后一个元素
置空。(实际上源码不是这么做的,源代码中是用变量来保存索引,直到全部下沉调整完成才进行替换)


替换后,结果就如下图显示一样。我们发现父节点大于子节点了,所以还需要再一次进行替换操作。


再一次替换后,将元素 30 下沉到下一个左边子节点,子节点上浮到原父节点位置。这就完成了下沉调整了。


四、总结
PriorityBlockingQueue 真的是个神奇的队列,可以实现优先出队。
最特别的是它只有一个锁,入队操作永远成功,而出队只有在空队列
的时候才会进行线程阻塞。可以说有一定的应用场景吧,比如:有任务要执行,可以对任务加一个优先级的权重,
这样队列会识别出来,对该任务优先进行出队。
相关文章:
多线程篇(阻塞队列- PriorityBlockingQueue)(持续更新迭代)
目录 一、简介 二、类图 三、源码解析 1. 字段讲解 2. 构造方法 3. 入队方法 put 浮调整比较器方法的实现 入队图解 4. 出队方法 take dequeue 下沉调整比较器方法的实现 出队图解 四、总结 一、简介 PriorityBlockingQueue队列是 JDK1.5 的时候出来的一个阻塞…...
strstr函数的使用和模拟实现
目录 1.头文件 2.strstr函数的使用 3.strstr函数模拟实现 小心!VS2022不可直接接触,否则!没这个必要,方源面色淡然一把抓住!顷刻炼化! 1.头文件 strstr函数的使用需要头文件 #include<string.h>…...
使用Selenium与WebDriver实现跨浏览器自动化数据抓取
背景/引言 在数据驱动的时代,网络爬虫成为了收集和分析海量数据的关键工具。为了应对不同浏览器环境下的兼容性问题,Selenium与WebDriver成为了开发者实现跨浏览器自动化数据抓取的首选工具。本文将深入探讨如何利用Selenium和WebDriver实现跨浏览器的数…...
信创实践(3):基于x2openEuler将CentOS升级成openEuler,享受其带来的创新和安全特性
引言: 在当前的 IT 行业中,创新和安全性是两大关键趋势。随着 CentOS 停止维护,许多用户正在寻找替代方案,以保持其系统的更新和安全。openEuler 作为一个强大的开源操作系统,成为了理想的迁移目标。本教程将指导您如…...
LEAN 类型理论之注解(Annotations of LEAN Type Theory)-- 相等类型(Equality Type)
《何谓相等 (Equality),在类型理论(Type Theory)语境下》 与 《转化(conversion and reduction)后的相等(Equality)》,两文中,已对相等(Equality)的概念进行了描述&#…...
Idea 创建 Maven项目的时候卡死
文章目录 一、Archetype 和 Catalog1.1 Archetype(原型)1.2 Catalog(目录) 二、可能遇到的问题2.1 问题描述2.2 原因分析2.3 解决方案 参考资料 一、Archetype 和 Catalog 1.1 Archetype(原型) Archetype…...
C++入门(02)简单了解C++应用程序的开发部署
文章目录 1. 开发C应用程序2. 简单示例计算器程序3. 需求分析4. 设计5. 编码6. 编译7. 调试8. 测试9. 部署10. 部署示例10.1 使用Visual Studio Installer Projects创建安装程序10.2 安装VisualStudio Installer Projects扩展10.3 在calculator解决方案中创建安装项目10.3.1 添…...
有了室内外一体化人行导航,你还怕迷路吗?
在快节奏的现代生活中,无论是穿梭于繁华的都市丛林,还是漫步于错综复杂的购物中心,迷路似乎成了不少人的“小确丧”。然而,随着科技的飞速发展,一项革命性的创新——室内外一体化人行导航系统,正悄然改变着…...
Python虚拟环境包迁移
1. 激活源虚拟环境 首先,激活你想要导出包的源虚拟环境。在命令行中输入: Windows: path\to\your\source_env\Scripts\activatemacOS/Linux: source path/to/your/source_env/bin/activate 2. 导出已安装包的列表 使用以下命令生成一个requirements…...
利用分布式锁在ASP.NET Core中实现防抖
前言 在 Web 应用开发过程中,防抖(Debounce) 是确保同一操作在短时间内不会被重复触发的一种有效手段。常见的场景包括防止用户在短时间内重复提交表单,或者避免多次点击按钮导致后台服务执行多次相同的操作。无论在单机环境中&a…...
Django+Vue3前后端分离学习(二)(重写User类)
一、重写User类: 1、首先导入User类: from django.contrib.auth.models import User 2、然后点在User上,按住ctrl 点进去,发现 User类继承AbstractUser Ctrl点进去AbstractUser,然后将此方法全部复制到自己APP的mo…...
兔英语语法体系——观后笔记
目录 一、视频链接 二、视频前言 三、简单句(Simple Sentences) 1. 可独立完成的动作 2. 有1个动作的承受者 3. 有两个动作承受者 4. 只有一个动作承受者(但需补充) 5. 非 “动作” 6. 总结 四、五大基本句型 五、句子成分 6. 定语 7. 状语 8. 同位语 9. 总结 …...
哈希表如何避免冲突
系列文章: 1. 先导片--Map&Set之二叉搜索树 2. Map&Set之相关概念 3. 哈希表如何避免冲突 目录 1.概念 2. 冲突-概念 3. 冲突-避免 3.1 冲突-避免-哈希函数设计 3.2 冲突-避免-负载因子调节 4. 冲突-解决 4.1 冲突-解决-闭散列 4.1.1 线性探…...
内核模块驱动开发
内核模块开始学习前,一定是最先接触到内核模块三要素(面试),驱动入口、驱动出口和协议的遵循。 1.内核模块三要素(面试)//修饰模块化驱动的入口函数module_init(demo_init);//修饰模块化驱动的出口函数module_eixt(demo_exit);//遵循GPL开源协议MODULE_…...
Linux 下 alsa 库录音并保存为 WAV 格式
麦克风列表: [jnjn build]$ arecord -l **** List of CAPTURE Hardware Devices **** card 0: AudioPCI [Ensoniq AudioPCI], device 0: ES1371/1 [ES1371 DAC2/ADC]Subdevices: 1/1Subdevice #0: subdevice #0 card 1: Camera [2K USB Camera], device 0: USB Aud…...
使用stripe进行在线支付、退款、订阅、取消订阅功能(uniapp+h5)
stripe官网:Stripe 登录 | 登录 Stripe 管理平台 然后在首页当中打开测试模式,使用测试的公钥跟私钥进行开发 测试卡号 4242 4242 4242 4242 1234 567 在线支付 stripe的在线支付有两种,第一种就是无代码,第二中就是使用api进行自定义,一般来说推荐第二种进行开发 无…...
深度学习中常见的损失函数
关注B站可以观看更多实战教学视频:hallo128的个人空间 深度学习中常见的损失函数 损失函数的作用 损失函数是衡量神经网络输出与真实标签之间差距的指标。在训练过程中,神经网络的目标是最小化损失函数的值。常见的损失函数包括均方误差(MS…...
认识Linux及Linux的环境搭建
目录 1、什么是Linux2、Linux环境搭建2.1 下载安装 Xshell2.2 下载安装 VMware Workstation Pro2.3 选择适合自己系统 1、什么是Linux Linux,一般指GNU/Linux(单独的Linux内核并不可直接使用,一般搭配GNU套件,故得此称呼ÿ…...
Java之线程篇三
目录 线程状态 观察线程的所有状态 线程状态及其描述 线程状态转换 代码示例1 代码示例2 线程安全 概念 线程不安全的代码示例 线程不安全的原因 线程安全的代码示例-加锁 synchronized关键字 synchronized的特性 小结 形成死锁的四个必要条件 …...
Bootstrap动态设置表格title项
页面searchType <form id"formId"><div class"select-list"><ul><li><select name"searchType" id"searchType"><option value"1">按各节点统计</option><option value"…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
