当前位置: 首页 > news >正文

OpenCV-轮廓检测

文章目录

  • 一、简介
    • 1. 意义
    • 2.具体步骤
  • 二、代码实现
  • 三、总结

一、简介

1. 意义

在OpenCV中,轮廓检测是图像处理中一个非常重要的环节,它允许我们识别图像中的形状。这个过程通常涉及几个步骤:读取图像、转换为灰度图、应用阈值处理(或边缘检测)以获取二值图像、然后使用cv2.findContours()函数查找轮廓。

2.具体步骤

  • 图像预处理:首先,对原始图像进行预处理,以便更容易地检测轮廓。这通常包括转换为灰度图像、应用滤波器(如高斯模糊)以减少噪声,以及二值化图像以简化后续处理。
  • 二值化:将灰度图像转换为二值图像,即图像中的每个像素都被设置为黑色或白色,这取决于其灰度值是否超过某个阈值。二值化是轮廓检测中的关键步骤,因为它简化了图像,使得轮廓更加清晰。
  • 查找轮廓:使用OpenCV的cv2.findContours()函数在二值图像中查找轮廓。这个函数会返回图像中所有轮廓的列表以及轮廓的层次结构。
  • 轮廓绘制:为了可视化或进一步处理,可以使用cv2.drawContours()函数在原始图像或另一个图像上绘制找到的轮廓。

二、代码实现

这段代码是对图片进行轮廓检测,通过读取图片,并转换为灰度图等一系列操作来对图片进行轮廓绘制,以下是代码详情与解释。

import cv2  # 读取图像  
phone = cv2.imread('sj.png')  
# 转换为灰度图  
phone_gray = cv2.cvtColor(phone, cv2.COLOR_BGR2GRAY)  
# 显示灰度图  
cv2.imshow('phone_gray', phone_gray)  
cv2.waitKey(0)  # 应用阈值处理以进行二值化  
ret, phone_binary = cv2.threshold(phone_gray, 120, 255, cv2.THRESH_BINARY)  
# 显示二值化图像  
cv2.imshow('phone_binary', phone_binary)  
cv2.waitKey(0)  # 寻找轮廓  
contours, hierarchy = cv2.findContours(phone_binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)  
# 打印层次结构和轮廓数量  
print(hierarchy)  
print(len(contours))  # 轮廓绘制  
# 在原始图像上绘制轮廓  
image_copy = phone.copy()  
cv2.drawContours(image_copy, contours, -1, (0, 255, 0), 3)  
# 显示带有轮廓的图像  
cv2.imshow('Contours_show', image_copy)  
cv2.waitKey(0)  # 销毁所有窗口  
cv2.destroyAllWindows()
  • 读取图像:使用cv2.imread()函数读取名为sj.png的图像文件。
  • 转换为灰度图:通过cv2.cvtColor()函数将图像从BGR颜色空间转换为灰度图像,因为轮廓检测通常在灰度图像上进行。
  • 显示灰度图:使用cv2.imshow()函数显示灰度图像。
  • 二值化:应用阈值处理将灰度图像转换为二值图像,其中所有像素值大于或等于120的都被设置为255(白色),其余都被设置为0(黑色)。
  • 显示二值化图像:使用cv2.imshow()函数显示二值化后的图像。
  • 寻找轮廓:使用cv2.findContours()函数在二值化图像中查找轮廓。该函数返回两个值:轮廓列表和轮廓的层次结构。
  • 打印层次结构和轮廓数量:输出轮廓的层次结构和找到的轮廓数量。
  • 轮廓绘制:在原始图像(或其副本)上绘制找到的轮廓。这里使用绿色((0, 255, 0))和线宽为3来绘制。
  • 显示带有轮廓的图像:使用cv2.imshow()函数显示绘制了轮廓的图像。
  • 销毁所有窗口:在程序结束时销毁所有OpenCV创建的窗口。
    在这里插入图片描述

三、总结

在读取图像文件名,我们可以根据具体需求调整阈值处理和其他参数。此外,cv2.RETR_TREE是一个轮廓检索模式,它检索所有轮廓并创建完整的层次结构。根据我们的需求,可以选择其他检索模式,如cv2.RETR_EXTERNAL只检索最外层的轮廓。cv2.CHAIN_APPROX_SIMPLE是一个轮廓近似方法,它压缩水平、垂直和对角线段,只保留它们的端点。

相关文章:

OpenCV-轮廓检测

文章目录 一、简介1. 意义2.具体步骤 二、代码实现三、总结 一、简介 1. 意义 在OpenCV中,轮廓检测是图像处理中一个非常重要的环节,它允许我们识别图像中的形状。这个过程通常涉及几个步骤:读取图像、转换为灰度图、应用阈值处理&#xff…...

vue页面使用自定义字体

一、准备好字体文件 一般字体问价格式为 .tff,可以去包图网等等网站去下载,好看的太多了!!! 下载下来就是单个的 .tff文件,下载下来后可以进行重命名,但是不要改变他的后缀名,我把他…...

C++——list常见函数的使用和模拟实现(2)

在list的上一篇博客里实现了list基本的初始化、插入数据、删除数据的基本功能,这些功能的实现方式只是在原先链表的实现里加入了模版而已,但是list作为一个容器,它还有一个基础的东西——迭代器。list的迭代器和之前实现的string和vector很大…...

C 标准库 - `<float.h>`

C 标准库 - <float.h> 概述 <float.h> 是 C 标准库中的一个头文件&#xff0c;它定义了与浮点数类型相关的宏。这些宏提供了关于浮点数的属性信息&#xff0c;如精度、最小和最大值、以及舍入误差等。这个头文件对于需要精确控制浮点数行为的程序非常有用&#x…...

【机器人工具箱Robotics Toolbox开发笔记(二)】Matlab中机器人工具箱的下载与安装

Matlab机器人工具箱(Robotics Toolbox)可从Peter Corke教授提供的网站上免费下载。网址为:http://www.petercorke.com/Robotics_Toolbox.html。 图1 网站所提供的机器人工具箱版本 在Downloading the Toolbox栏目中单击here按钮进入下载页面,然后在该页面中填写国家、组织…...

ROS2 Nav2 - Smac 规划器

系列文章目录 前言 SmacPlanner 是 Nav2 Planner 服务器的插件。它目前包括 3 个不同的插件&#xff1a; SmacPlannerHybrid&#xff1a;高度优化的完全可重新配置的 Hybrid-A* 实现&#xff0c;支持 Dubin 和 Reeds-Shepp 模型&#xff08;足式、阿克曼和汽车模型&#xff09…...

LabVIEW环境中等待FPGA模块初始化完成

这个程序使用的是LabVIEW环境中的FPGA模块和I/O模块初始化功能&#xff0c;主要实现等待FAM&#xff08;Field-Programmable Gate Array Module&#xff0c;FPGA模块&#xff09;的初始化完成&#xff0c;并处理初始化过程中的错误。让我们逐步分析各部分的功能&#xff1a; 1.…...

手机TF卡格式化后数据恢复:方法、挑战与预防措施

在现代生活中&#xff0c;‌手机已经成为我们不可或缺的一部分&#xff0c;‌而TF卡&#xff08;‌即MicroSD卡&#xff09;‌作为手机存储的扩展&#xff0c;‌更是承载了我们大量的重要数据。‌然而&#xff0c;‌不慎的格式化操作往往导致数据丢失&#xff0c;‌给用户带来不…...

ceph对象存储使用的一些思考

导言 我在某司做对象存储约4年时间&#xff0c;作为研发人员&#xff0c;接触过大量的市场项目&#xff0c;对国内市场上对对象存储的使用有一些了解和思考。本文主要是对本人经历的过往对象存储项目中发现的一些问题进行总结。 背景如下&#xff1a; 基于ceph版本进行开发并进…...

单词排序C++实现

代码如下&#xff1a; #include<iostream> #include<string> #include<fstream> #include<map> #include<iomanip> #include<algorithm> #include<vector>int read_file(std::map<std::string,int> &map_words) {std::st…...

828华为云征文 | Flexus X 实例服务器网络性能深度评测

引言 随着互联网应用的快速发展&#xff0c;网络带宽和性能对云服务器的表现至关重要。在不同的云服务平台上&#xff0c;即便配置相同的带宽&#xff0c;实际的网络表现也可能有所差异。因此&#xff0c;了解并测试服务器的网络性能变得尤为重要。本文将以华为云X实例服务器为…...

STL —heap算法源码刨析 make_heap、push_heap、pop_heap、sort_heap操作分析

STL —heap算法源码刨析 heap算法概述push_heap 插入元素pop_heap 取出根节点元素sort_heap 按极值存放元素make_heap 将一段现有数据构造成heap程序测试 heap算法概述 heap的内部是一个完全二叉树&#xff0c;将极值存放在根节点。这个里的极值可分为最大值、最小值。根据极值…...

走进低代码表单开发(一):可视化表单数据源设计

在前文&#xff0c;我们已对勤研低代码平台的报表功能做了详细介绍。接下来&#xff0c;让我们深入探究低代码开发中最为常用的表单设计功能。一个完整的应用是由众多表单组合而成的&#xff0c;所以高效的表单设计在开发过程中起着至关重要的作用。让我们一同了解勤研低代码开…...

简单好用的OCR API

现如今&#xff0c;越来越多的科技产品可以帮助我们改善和提高相应的工作效率。OCR技术的出现&#xff0c;提高了人们的工作效率&#xff0c;其应用领域及其广泛。就拿应用了OCR技术的翔云文档识别服务来说&#xff0c;只需上传文档图片便可自动识别并返回文档中相应的内容。翔…...

c++的拷贝构造函数和赋值函数

拷贝构造函数和赋值函数 什么是拷贝构造 是一种特殊构造函数&#xff0c;如果没有显式的实现&#xff0c;编译器就会自动生成。 class 类名 { public:// 拷贝构造类名(const 类名& that){} }; 什么时候会调用拷贝构造 当使用一个类对象给另一个新的类对象初始化时&…...

什么自动猫砂盆才适合旅游党?4个选购技巧统统告诉你!

有没有能让我们防夹3天不在家都不用担心猫咪铲屎问题的方法&#xff1f;当然有了&#xff01;自动猫砂盆就是最好的选择&#xff0c;要知道&#xff0c;有个好用合适的自动猫砂盆在家的话&#xff0c;根本不用担心生虫发臭的问题出现&#xff0c;因为自动猫砂盆能及时感应到猫咪…...

算法知识点————双指针【删除重复元素】【反转链表】

删除重复元素 题目&#xff1a;//给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数 思路&#xff1a…...

建造者模式builder

此篇为学习笔记&#xff0c;原文链接 https://refactoringguru.cn/design-patterns/builder 能够分步骤创建复杂对象。 该模式允许你使用相同的创建代码生成不同类型和形式的对象...

IEC103设备数据 转 IEC61850项目案例

目录 1 案例说明 1 2 VFBOX网关工作原理 1 3 准备工作 2 4 配置VFBOX网关采集103设备数是 2 5 用IEC61850协议转发数据 4 6 网关使用多个逻辑设备和逻辑节点的方法 6 7 IEC103协议说明 8 8 案例总结 9 1 案例说明 设置网关采集IEC103设备数据把采集的数据转成IEC61850协议转发…...

438.找到字符串中所有字母异位词

题目 链接&#xff1a;leetcode链接 思路分析&#xff08;滑动窗口&#xff09; 很容易想到&#xff0c;这个题目要求我们在字符串s中找到一个定长的窗口让窗口里面出现异位词。 OK&#xff0c;先思考一下怎么快速判断两个字符串是否是异位词&#xff1f; 比较简单的方法是…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...