当前位置: 首页 > news >正文

碰撞检测 | 详解圆-矩形碰撞检测与N圆覆盖模型(附ROS C++可视化)

目录

  • 0 专栏介绍
  • 1 N N N圆覆盖碰撞模型
  • 2 圆与矩形的碰撞检测
  • 3 算法仿真与可视化
    • 3.1 核心算法
    • 3.2 仿真实验

0 专栏介绍

🔥课设、毕设、创新竞赛必备!🔥本专栏涉及更高阶的运动规划算法轨迹优化实战,包括:曲线生成、碰撞检测、安全走廊、优化建模(QP、SQP、NMPC、iLQR等)、轨迹优化(梯度法、曲线法等),每个算法都包含代码实现加深理解

🚀详情:运动规划实战进阶:轨迹优化篇


本期实现如下的碰撞检测效果

在这里插入图片描述


1 N N N圆覆盖碰撞模型

在车辆的路径规划过程中,需要评估和避开可能的障碍物。 N N N圆覆盖碰撞检测算法可以快速检测和响应路径上的障碍物,从而优化行驶路线。

直观地,如图所示,采用单个外接圆包围物体,此时只需要检查圆心和半径的关系即可实现碰撞检测。然而这种方法容易造成自由空间狭窄,更精细的做法是利用 个圆盘覆盖物体,对这些圆依次进行单圆碰撞检测,如图所示

在这里插入图片描述

形式化地,设自车后轴中心坐标为 ( x , y ) (x, y) (x,y),由几何关系可知

{ x i d i s c = x + ( 2 i − 1 2 N ⋅ ( L 1 + L 2 ) − L 1 ) cos ⁡ θ y i d i s c = y + ( 2 i − 1 2 N ⋅ ( L 1 + L 2 ) − L 1 ) sin ⁡ θ i = 1 , 2 , ⋯ , N \begin{cases} x_{i}^{\mathrm{disc}}=x+\left( \frac{2i-1}{2N}\cdot \left( L_1+L_2 \right) -L_1 \right) \cos \theta\\ y_{i}^{\mathrm{disc}}=y+\left( \frac{2i-1}{2N}\cdot \left( L_1+L_2 \right) -L_1 \right) \sin \theta\\\end{cases}\,\,i=1,2,\cdots ,N {xidisc=x+(2N2i1(L1+L2)L1)cosθyidisc=y+(2N2i1(L1+L2)L1)sinθi=1,2,,N

其中 θ \theta θ是航向角; N N N是覆盖圆的数量, N N N越大碰撞检测越精细但同时计算负担更大。圆的半径由 N N N和自车几何形状唯一确定

R d i s c = ( L 1 + L 2 2 N ) 2 + ( W 2 ) 2 R^{\mathrm{disc}}=\sqrt{\left( \frac{L_1+L_2}{2N} \right) ^2+\left( \frac{W}{2} \right) ^2} Rdisc=(2NL1+L2)2+(2W)2

2 圆与矩形的碰撞检测

如图所示,核心原理是计算圆心与矩形的最短距离 ∣ u ∣ \left| \boldsymbol{u} \right| u,若 ∣ u ∣ < r \left| \boldsymbol{u} \right|<r u<r则两者相交。算法上,首先考虑无旋转的矩形,不失一般性地将圆投影到第一象限,得到

v = [ ∣ p x − c x ∣ ∣ p y − c y ∣ ] T \boldsymbol{v}=\left[ \begin{matrix} \left| p_x-c_x \right|& \left| p_y-c_y \right|\\\end{matrix} \right] ^T v=[pxcxpycy]T

其中 p \boldsymbol{p} p c \boldsymbol{c} c分别是矩形和圆的中心向量。设 l − l^- l w − w^- w分别为矩形长、宽的一半,则矩形中心到第一象限顶点向量为 h = [ l − w − ] \boldsymbol{h}=\left[ \begin{matrix} l^-& w^-\\\end{matrix} \right] h=[lw],从而得到最近距离向量

u = [ max ⁡ ( v x − h x , 0 ) max ⁡ ( v y − h y , 0 ) ] T \boldsymbol{u}=\left[ \begin{matrix} \max \left( v_x-h_x, 0 \right)& \max \left( v_y-h_y, 0 \right)\\\end{matrix} \right] ^T u=[max(vxhx,0)max(vyhy,0)]T

即将负数分量设为0;再比较 ∣ u ∣ \left| \boldsymbol{u} \right| u和圆的半径大小关系即可

在这里插入图片描述

推广到一般情形,设矩形旋转角度为 α \alpha α,则只需要将 v \boldsymbol{v} v反向旋转 α \alpha α角度即可转换为无旋转的场景,算法流程如下所示

在这里插入图片描述

3 算法仿真与可视化

3.1 核心算法

核心算法如下所示

  • 圆与矩形的碰撞检测

    auto other_rect = std::dynamic_pointer_cast<VRectangle>(other);for (const auto& disc : discs_)
    {auto v = disc.first - other_rect->center();// rotate ang project first quadrantfloat theta = -other_rect->angle();float rotate_vx = std::fabs(v.x * std::cos(theta) - v.y * std::sin(theta));float rotate_vy = std::fabs(v.x * std::sin(theta) + v.y * std::cos(theta));// right-top point of rectanglefloat h_x = std::fabs(other_rect->length()) / 2.0f;float h_y = std::fabs(other_rect->width()) / 2.0f;// closest vectorfloat u_x = std::max(0.0f, rotate_vx - h_x);float u_y = std::max(0.0f, rotate_vy - h_y);if (std::hypot(u_x, u_y) < disc.second)return true;
    }
    return false;
    
  • 圆与圆的碰撞检测

    auto other_circle = std::dynamic_pointer_cast<VCircle>(other);
    const auto& other_circle_center = other_circle->center();
    const auto& other_circle_radius = other_circle->radius();for (const auto& disc : discs_)
    {if (std::hypot(other_circle_center.x - disc.first.x, other_circle_center.y - disc.first.y) <=disc.second + other_circle_radius)return true;
    }
    return false;
    

3.2 仿真实验

通过Rviz->Add New Tool添加Polygon Simulation插件

s

开启碰撞检测功能后,验证 N N N圆覆盖碰撞检测算法

  • 单圆碰撞与无碰撞情形

在这里插入图片描述

  • N N N圆覆盖模型与圆的碰撞检测

在这里插入图片描述

  • N N N圆覆盖模型与矩形的碰撞检测

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

相关文章:

碰撞检测 | 详解圆-矩形碰撞检测与N圆覆盖模型(附ROS C++可视化)

目录 0 专栏介绍1 N N N圆覆盖碰撞模型2 圆与矩形的碰撞检测3 算法仿真与可视化3.1 核心算法3.2 仿真实验 0 专栏介绍 &#x1f525;课设、毕设、创新竞赛必备&#xff01;&#x1f525;本专栏涉及更高阶的运动规划算法轨迹优化实战&#xff0c;包括&#xff1a;曲线生成、碰…...

pandas读取Excel文件单元格中的百分数时保持数据格式及精度

pandas读取Excel文件单元格中的百分数时保持数据格式及精度 在使用Pandas读取Excel文件时,通常Excel中的百分数会被转换为浮点数。在这种情况下,如果你希望保留数据的格式和精度,有几个步骤可以帮助你实现这个目标: 读取数据:使用Pandas的read_excel函数来读取Excel文件。…...

【重学 MySQL】二十五、等值连接vs非等值连接、自连接vs非自连接

【重学 MySQL】二十五、等值连接vs非等值连接、自连接vs非自连接 等值连接&#xff08;Equijoin&#xff09; vs 非等值连接&#xff08;Non-equijoin&#xff09;等值连接&#xff08;Equijoin&#xff09;非等值连接&#xff08;Non-equijoin&#xff09; 自连接&#xff08;…...

Springboot工程配置https访问

背景 因为前端工程使用nginx配置了https访问&#xff0c;在https直接请求我们Springboot后端的http接口会报错。那么我们就需要配置使得我们后端的springboot服务支持https访问。 证书生成 在配置springboot工程https之前&#xff0c;我们需要生成自签名证书以及Spring Boot…...

智慧水务建设的核心内容

智慧水务解决方案的主要对象客户是全国各地水务投资集团、水务局、水司、水厂、农水办,也会有少量项目涉及到住建局或城管局。解决方案通常会以具体的某个业务单位的职能工作为切入点,配合物联感知、大数据分析、人工智能等技术手段,为城市供水、乡村供水的水质安全、供水调…...

opencv之图像轮廓

文章目录 前言查找并绘制轮廓查找图像轮廓&#xff1a;findContours函数绘制图像轮廓&#xff1a;drawContours函数轮廓实例 矩特征Hu矩Hu矩函数形状匹配 前言 图像轮廓指的是图像中物体边缘或形状的外部线条&#xff0c;通常通过图像处理技术来检测和提取。轮廓是用于描述物体…...

shader 案例学习笔记之step函数

step函数 参数是float step(edge,x)&#xff1a;当x>edge时返回1&#xff0c;否则返回0 #ifdef GL_ES precision mediump float; #endifuniform vec2 u_resolution;void main(){vec2 st gl_FragCoord.xy/u_resolution.xy;float f step(0.5, st.x);gl_FragColor vec4(f…...

node快速复制文件或文件夹,排除部分文件(node_modules)

const fs require(fs) const path require(path)/*** description: 获取完整的文件路径* param {*} url 路径* return {*} 返回完整的文件路径*/ const getPath (url) > {return path.join(__dirname, url) }/*** description: 获取参数* return {*} target【目标文件夹】…...

网络层 VIII(网络层设备——路由器)【★★★★★★】

一、冲突域与广播域 这里的“域”表示冲突或广播在其中发生并传播的区域。 1. 冲突域 冲突域是指连接到同一物理介质上的所有结点的集合&#xff0c;这些结点之间存在介质争用的现象&#xff08;能产生冲突的所有设备的集合&#xff09;。也就是说&#xff0c;若这些设备同时发…...

302.AI学术论文搜索工具的智能体验

Hey朋友们&#xff0c; 你是否曾在学术的海洋里迷失方向&#xff0c;为了找到一篇论文而苦苦挣扎&#xff1f; 就像在茫茫大海中寻找灯塔&#xff0c;我们渴望一盏明灯&#xff0c;指引我们前行。 别担心&#xff0c;今天我来给你介绍一个超级给力的工具——302.AI学术论文…...

arm平台常用工具和动态库编译

目录 perf 交叉编译交叉编译zlib交叉编译 elfutils交叉编译 perfperf 使用 libconfig 交叉编译openssl 交叉编译libpcap 交叉编译统信、龙芯等平台编译QT交叉编译编译QT源码编译QtCreator 编译ssl编译libsrtp(2.3.0版本)编译libyuvlibopus编译libopenh264编译libusrsctp编译lib…...

代码随想录训练营day45|115.不同的子序列,583. 两个字符串的删除操作,72. 编辑距离

115.不同的子序列 题目 dp[i][j]表示的是在以是s[j]为结尾的字符串中最多可以找到几种组成以t[i]为结尾的字符串的方式。 如果s[i]t[j]&#xff0c; 1.利用第i个和第j个匹配&#xff0c;在j-1中寻找i-1. 2.不适用这两个进行匹配&#xff0c;在j-1中寻找i 如果s[i]&#xff01;…...

椋鸟C++笔记#7:标准模板库STL初识

文章目录 标准模板库&#xff08;Standard Template Library&#xff09;STL的版本P.J.版RW版SGI版 STL的组成部分 萌新的学习笔记&#xff0c;写错了恳请斧正。 标准模板库&#xff08;Standard Template Library&#xff09; 标准模板库STL&#xff0c;是C标准库的一个非常重…...

滴滴嘀嗒,出行行业响起Robotaxi“倒计时”

文&#xff1a;互联网江湖 作者&#xff1a;刘致呈 前几天&#xff0c;各大出行平台的半年报陆续披露完毕&#xff0c;有的还在亏损&#xff0c;但也有人开始盈利。 如祺出行上市后的首份半年报营收10.37亿&#xff0c;同比增长13.6%。上半年运营亏损为2.56亿元&#xff0c;同…...

【MATLAB源码-第264期】基于matlab的跳频通信系统仿真,采用MSK调制方式,差分解调;输出误码率曲线和各节点波形图。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 跳频通信系统是一种能够提高通信抗干扰能力的技术&#xff0c;它通过在传输过程中不断地改变载波频率来避开干扰或者窃听。在这套跳频通信系统中&#xff0c;我们采用了最小频移键控&#xff08;MSK&#xff09;作为调制方式…...

如何在多台电脑上同步 VSCode配置和插件

上一篇文章最新前端开发VSCode高效实用插件推荐清单总结了前端开发实用的插件&#xff0c;换电脑的时候怎么同步这些配置与插件呢&#xff0c;难道又要重新安装一遍吗&#x1f631; 现在就来聊聊要在多台电脑上同步 VSCode配置和插件的几种方法&#xff1a; 方法一&#xff1…...

深度优先算法,广度优先算法,hill climbing,贪心搜索,A*算法,启发式搜索算法是什么,比起一般搜索法算法有什么区别

深度优先算法&#xff08;Depth-First Search, DFS&#xff09; 深度优先搜索是一种用于遍历或搜索树或图的算法。它沿着树的深度遍历树的节点&#xff0c;尽可能深地搜索树的分支。当节点v的所在边都已被探寻过&#xff0c;搜索将回溯到发现节点v的那条边的起始节点。这一过程…...

《python语言程序设计》2018版第8章第14题金融:信用卡号合法性 利用6.29题

一、之前6.29题我做的代码 这是用数字来进行分辨的 is_txt 4383576018402626 #合法def split_the_data_even(vis_n):current_a1 vis_n // 10000a_t1 vis_n % 10000# print("1th", a_t1)a_t2 current_a1 % 10000# print("2th", a_t2)current_a3 curre…...

QT 基础学习

1> 使用绘制事件完成钟表的绘制 头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPainter> #include <QDebug> #include <QTime> #include <QTimer> #include <QDateTime> //#include <string> #includ…...

【Gephi】可视化教程

此教程专供欣欣向荣及其舍友使用 文章目录 导入数据上色改变布局设置节点大小统计拓扑结构输出图形保存文件 导入数据 点击【文件】-【导入电子表格】 先选择csv格式的network 直接下一步 点击完成 【图的类型】改为“有向的” 点击确认 会弹出报错&#xff0c;直接clos…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...