当前位置: 首页 > news >正文

Spark的介绍

一、分布式的思想

不管是数据也好,计算也好,都没有最大的电脑,而是多个小电脑组合而成。

存储:将3T的文件拆分成若干个小文件,例如每500M一个小文件,将这些小文件存储在不同的机器上 。 -- HDFS

计算:

分:将一个大的任务拆分成多个小的任务,每台机器处理一 个小的任务,并行处理

合:将多个小任务的结果最终再合并生成最终的结果进行返 回问题解决 。

--MapReduce (Hive)

Spark 解决不了存储的问题,spark是搞计算的。你学习了spark,以前的计算引擎都可以作废了。Spark可以做离线的计算可以做准实时(实时计算目前使用Flink比较多)

发展 :计算引擎 ---存储还得是hdfs

第一代计算引擎:MapReduce:用廉价机器实现分布式大数据处理

第二代计算引擎:Tez:基于MR优化了DAG,性能比MR快一些

第三代计算引擎:Spark:优先使用内存式计算引擎 ,国内目前主要应用的离线计算引擎

第四代计算引擎:Flink:实时流式计算引擎 , 国内目前最主流实时计算引擎

二、Spark简介 [火花]

1、发展历程

DataBricks官网:https://databricks.com/spark/about

spark的诞生其实是因为MR计算引擎太慢了。

MR计算是基于磁盘的,Spark计算是基于内存的。

spark的发展历程:

2009年,Spark诞生于伯克利AMPLab,伯克利大学的研究性项目。

2014年2月成为Apache顶级项目,同年5月发布Spark 1.0正式版本

2018年Spark2.4.0发布,成为全球最大的开源项目,目前是Apache中的顶级项目之一。

2020年6月Spark发布3.0.0正式版,目前学习的就是3.x

apache给它分配的网站:Apache Spark™ - Unified Engine for large-scale data analytics

定义:基于内存式计算的分布式的统一化的数据分析引擎。

分析引擎:hive 、spark、presto、impala 等。所谓的引擎,狭义理解就是sql

2、spark能做什么?

实现离线数据批处理:类似于MapReduce、Pandas,写代码做处理:代码类的离线数据处理

实现交互式即时数据查询:类似于Hive、Presto、Impala,使 用SQL做即席查询分析:SQL类的离线数据处理

实现实时数据处理:类似于Storm、Flink实现分布式的实时计算:代码类实时计算或者SQL类的实时计算

实现机器学习的开发:代替传统一些机器学习工具

3、spark有哪些部分组成?

Hadoop的组成部分:common、MapReduce、Hdfs、Yarn

Spark Core:Spark最核心的模块,可以基于多种语言实现代码类的离线开发 【类似于MR】

Spark SQL:类似于Hive,基于SQL进行开发,SQL会转换为SparkCore离线程序 【类似Hive】

Spark Streaming:基于SparkCore之上构建了准实时的计算模块 【淘汰了】

Struct Streaming:基于SparkSQL之上构建了结构化实时计算模块 【替代了Spark Streaming】

Spark ML lib:机器学习算法库,提供各种机器学习算法工具,可以基于SparkCore或者SparkSQL实现开发。

开发语言:Python、SQL、Scala、Java、R【Spark的源码是通过Scala语言开发的

一个软件是什么语言写的,跟什么语言可以操作这个软件是两回事儿。

Scala 语言是基于java实现的,底层也需要虚拟机。

4、spark运行有五种模式【重点】

本地模式:Local:一般用于做测试,验证代码逻辑,不是分布式运行,只会启动1个进程来运行所有任务。

集群模式:Cluster:一般用于生产环境,用于实现PySpark程序的分布式的运行

Standalone:Spark自带的分布式资源平台,功能类似于YARN

YARN:Spark on YARN,将Spark程序提交给YARN来运行,工作中主要使用的模式

Mesos:类似于YARN,国外见得多,国内基本见不到

K8s:基于分布式容器的资源管理平台,运维层面的工具。

解释:Spark是一个分布式的分析引擎,所以它部署的时候是分布式的,有用主节点,从节点这些内容。Standalone使用的是Spark自带的分布式资源平台,但是假如一个公司已经有Yarn分析平台了,就没必要再搭建spark分析平台,浪费资源。

学习过程中:本地模式 --> Standalone --> YARN ,将来spark在yarn上跑。

5、spark 为什么比MR快?

1、MR不支持DAG【有向无环图】,计算过程是固定,一个MR 只有1个Map和1个Reduce构成。 一个Map和Reduce是一个过程,和另一个Map和Reduce是不一样的。

从落地到磁盘的那一刻,上一个过程已经结束了,下一个过程和上一个过程没有关系了。

2、MR是一个基于磁盘的计算框架,读写效率比较低

3、MR的Task计算是进程级别的,每次运行一个Task都需要启动一个进程,然后运行结束还是释放进程,比较慢。【一个进程可以包含多个线程,比如qq是一个进程,发消息,传文件是一个个线程】

MapTask:进程

ReduceTask:进程

进程启动和销毁是比较耗时的

spark为什么那么快?

1、Spark支持DAG,一个Spark程序中的过程是不固定,由代码 所决定。

2、Task任务都是线程级别的

3、计算是基于内存的。

 

总结:1.数据结构一个HDFS,一个是RDD

2.计算流结构一个用的MR,一个是DAG

3.中间存储一个放到磁盘,一个全在内存

4.运行方式一个用进程,一个是线程

一、Standalone集群环境安装

1、理解Standalone集群架构

image.png

image.png


架构:普通分布式主从架构
主:Master:管理节点:管理从节点、接客、资源管理和任务
调度,等同于YARN中的ResourceManager
从:Worker:计算节点:负责利用自己节点的资源运行主节点
分配的任务
功能:提供分布式资源管理和任务调度,基本上与YARN是一致的
看着很像Yarn,其实作用跟yarn一样,是spark自带的计算平台。
每一台服务器上都要安装Annaconda ,否则会出现python3 找不到的错误!!
2、Standalone集群部署
第一步:将bigdata02和bigdata03安装Annaconda,因为里面有python3环境,假如没有安装的话,就报这个错误:

相关文章:

Spark的介绍

一、分布式的思想 不管是数据也好,计算也好,都没有最大的电脑,而是多个小电脑组合而成。 存储:将3T的文件拆分成若干个小文件,例如每500M一个小文件,将这些小文件存储在不同的机器上 。 -- HDFS 计算&#…...

SpringBoot项目是如何启动

启动步骤 概念 运行main方法,初始化SpringApplication 从spring.factories读取listener ApplicationContentInitializer运行run方法读取环境变量,配置信息创建SpringApplication上下文预初始化上下文,将启动类作为配置类进行读取调用 refres…...

科技之光,照亮未来之路“2024南京国际人工智能展会”

全球科技产业的版图正以前所未有的速度重构,而位于中国东部沿海经济带的江浙沪地区,作为科技创新与产业升级的高地,始终站在这一浪潮的最前沿。2024年,这一区域的科技盛宴——“2024南京人工智能展会”即将在南京国际博览中心盛大…...

在深度学习计算机视觉的语义分割中,Boundary和Edge的区别是?

在深度学习中的计算机视觉任务中,语义分割中的 Boundary 和 Edge 其实有一些相似之处,但它们的定义和使用场景略有不同。下面是两者的区别: 1. Boundary(边界) 定义:Boundary 是指一个对象或区域的边界&a…...

【JAVA入门】Day41 - 字节缓冲流和字符缓冲流

【JAVA入门】Day41 - 字节缓冲流和字符缓冲流 文章目录 【JAVA入门】Day41 - 字节缓冲流和字符缓冲流一、缓冲流的体系结构二、字节缓冲流2.1 字节缓冲流提高效率的底层原理 三、字符缓冲流 在IO流体系中,FileInputStream,FileOutputStream,F…...

collocate join,bucket join,broadcast join,shuffle join对比分析

在分布式计算和大数据处理中,尤其是在使用像 Apache Spark、Hive 等大数据处理框架时,Join 操作是非常常见的。根据数据分布方式和执行机制,Join 操作可以分为不同的类型,如 Collocate Join、Bucket Join、Broadcast Join 和 Shuffle Join。以下是它们的详细对比分析: 1.…...

微信自动通过好友和自动拉人进群,微加机器人这个功能太好用了

又发现一个好用的功能,之前就想找一个这种工具,现在发现可以利用微加机器人的两个功能来实现,分别是加好友和关键词拉群 首先 微加机器人的专业版 > 功能 > 加好友设置 可以设置一个关键词通过,这样别人加好友的时候只需要输入制定内…...

R语言统计分析——功效分析3(相关、线性模型)

参考资料:R语言实战【第2版】 1、相关性 pwr.r.test()函数可以对相关性分析进行功效分析。格式如下: pwr.r.test(n, r, sig.level, power, alternative) 其中,n是观测数目,r是效应值(通过线性相关系数衡量&#xff0…...

Django创建模型

1、根据创建好应用模块 python manage.py startapp tests 2、在models文件里创建模型 from django.db import modelsfrom book.models import User# Create your models here. class Tests(models.Model):STATUS_CHOICES ((0, 启用),(1, 停用),# 更多状态...)add_time mode…...

盘点2024年大家都在用的短视频剪辑工具

你现在休息的时间是不是都靠短视频来消遣?看着看着你就会发现短视频制作好像我也可以了吧?这次我就介绍一些简单好操作的短视频剪辑工具。 1.FOXIT视频剪辑 连接直达>>https://www.pdf365.cn/foxitclip/ 短视频剪辑其实也不难,只需…...

“左侧文字横向”的QTabWidget

左侧用 QToolButton 组, 右侧用 QStackedWidget,信号槽绑定切换页面 可定制化高 QButtonGroup* btnGp new QButtonGroup(this);btnGp->addButton(ui->btn1, 0);btnGp->addButton(ui->btn2, 1);btnGp->addButton(ui->btn3, 2);connect…...

python学习之字符串操作

str python # 定义一个字符串变量 print(id(str))print(str) # 打印整个字符串 print(str[0:-1]) # 打印字符串第一个到倒数第二个字符(不包含倒数第一个字符) print(str[0]) # 打印字符串的第一个字符 print(str[2:5]) # 打印字符串第三到第…...

第7篇:【系统分析师】计算机网络

考点汇总 考点详情 1网络模型和协议:OSI/RM七层模型,网络标准和协议,TCP/IP协议族,端口 七层:应用层,表示层,会话层,传输层,网络层,数据链路层,…...

无人机培训机构组装调试技术详解

一、基础知识学习 在进入无人机组装调试领域之前,扎实的基础知识是不可或缺的。学员需掌握以下内容: 1. 无人机基本原理:了解无人机的飞行原理,包括升力、推力、重力和阻力等基本物理概念,以及无人机的飞行控制系统&…...

‌汽车的舒适进入功能是什么意思?

移动管家汽车的舒适进入系统是指无钥匙进入功能,它允许驾驶者在距离车辆一定范围内自动感应解锁车辆,并具备无钥匙启动功能‌。舒适进入系统的核心优势包括: ‌智能化操作‌:无需传统钥匙,通过智能感应实现车门解锁和…...

杂七杂八-系统环境安装

杂七杂八-系统&环境安装 1. 系统安装2. 环境安装 仅个人笔记使用,后续会根据自己遇到问题记录,感谢点赞关注 1. 系统安装 Windows安装linux子系统WSL2:使用windows系统跑linux程序(大模型)WSL VSCode:VSCode连接WSL实现高效…...

Redis高可用,Redis性能管理

文章目录 一,Redis高可用,Redis性能管理二,Redis持久化1.RDB持久化1.1触发条件(1)手动触发(2)自动触发 1.2 Redis 的 RDB 持久化配置1.3 RDB执行流程(1) 判断是否有其他持久化操作在执行(2) 父进…...

React项目中使用发布订阅模式

React项目中使用发布订阅模式 1.创建发布订阅器2.在组件中使用发布订阅器3. 订阅数据 发布订阅模式(也称观察者模式)是一种管理跨组件通信的有效方式,尤其是在不希望直接依赖于特定组件的情况下。这种模式允许一个对象(发布者&…...

buck boost Ldo 经典模型的默写

BUCK: BOOST: LDO: BUCK-BOOST:...

velero v1.14.1迁移kubernetes集群

1 概述 velero是vmware开源的一个备份和恢复工具,可作用于kubernetes集群下的任意对象和应用数据(PV上的数据)。github地址是https://github.com/vmware-tanzu/velero。 对于应用数据,可分文件级别的复制和块级别的复制。文件级…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...

6.9-QT模拟计算器

源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...