Ollama—87.4k star 的开源大模型服务框架!!
这一年来,AI 发展的越来越快,大模型使用的门槛也越来越低,每个人都可以在自己的本地运行大模型。今天再给大家介绍一个最厉害的开源大模型服务框架——ollama。
项目介绍
Ollama 是一个开源的大语言模型(LLM)服务工具,它允许用户在本地环境快速实验、管理和部署大型语言模型。它支持多种流行的开源大型语言模型,如 Llama 3.1、Phi 3、Mistral、Gemma 2 等,并且可以通过命令行界面轻松下载、运行和管理这些模型。
Ollama 的出现是为了降低使用大型语言模型的门槛,是让大型语言模型更加普及和易于访问。
项目安装
既然说到要降低门槛,Ollama 的安装也自然是非常的方便了。
Ollama 支持 macOS、Windows 和 Linux 操作系统,同时也提供了 Docker 镜像,方便在不同环境中部署。
-
macOS: 可以通过 Homebrew 安装,使用命令
brew install ollama
。也可以直接下载安装包运行。 -
Windows: 需要下载安装包并运行。
-
Linux: 可以通过包管理器或使用命令
curl -fsSL ``https://ollama.com/install.sh`` | sh
安装。 -
Docker: 可以使用
docker pull ollama/ollama
命令拉取镜像,并运行容器。
这里以 macOS 为例,下载了 ollama 的安装包后,直接双击运行这个可爱羊驼的应用,程序会提示你将应用移动到 application 文件夹,并且有后续的提示操作,我们按照指引去安装就可以了。
项目使用
安装完成后,我们可以直接执行 ollama 应用启动,也可以在命令行中执行 ollama serve
来启动 Ollama 服务。
当然,现在的我们主要在命令行中去操作 ollama。
执行 ollama list
:可以列出已下载的模型,如图:
执行 ollama pull <model>
可以从远程仓库拉取模型。
执行 ollama run <model>
可以运行指定的模型,我们使用 ollama run llama3:8b
来运行已经安装的模型,并且开始对话,如图:
web 界面
如果都是用命令行交互,还是挺麻烦的。这里再给大家介绍一个好用的 ollama 的 web 界面:open-webui。
这也是一个开源项目,我们可以使用 docker 来快速部署:
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
之后在浏览器访问 localhost:3000
,可以打开一个和 ChatGPT 很像的页面:
点击上方的“选择一个模型”,便可以看到 ollama 中已经下载的模型,选中后直接开启聊天就可以啦。
总结
Ollama 是一个功能强大且易于使用的工具,它为本地部署和运行大型语言模型提供了一个简单而有效的方法。无论是研究、开发还是日常使用,Ollama 都能满足用户对大型语言模型的需求。Ollama 拥有庞大的社区用户和相关的开源项目,配合 open-webui,我们可以更好的使用 Ollama,并为朋友们提供一个类似于 ChatGPT 的对话界面。
感兴趣的朋友们,赶紧去试试吧。
项目地址:
https://github.com/ollama/ollama
https://github.com/open-webui/open-webui
相关文章:

Ollama—87.4k star 的开源大模型服务框架!!
这一年来,AI 发展的越来越快,大模型使用的门槛也越来越低,每个人都可以在自己的本地运行大模型。今天再给大家介绍一个最厉害的开源大模型服务框架——ollama。 项目介绍 Ollama 是一个开源的大语言模型(LLM)服务工具…...

MySQL表的操作与数据类型
目录 前言 一、表的操作 1.创建一个表 2.查看表的结构 3.修改表 4.删除一个表 二、 MySQL的数据类型 0.数据类型一览: 1.整数类型 2.位类型 3.小数类型 4.字符类型 前言 在MySQL库的操作一文中介绍了有关MySQL库的操作,本节要讲解的是由库管理的结构——…...
mysql把某一个字段的值中的aa,替换成bb
UPDATE my_table SET my_column REPLACE(my_column, aa, bb); 例 假设my_table表在替换前的数据如下: idmy_column1hello aa2world aa aa3no aa here 执行上述UPDATE语句后,my_table表的数据将变为: idmy_column1hello bb2world bb b…...
【系统架构设计师】原型模式详解
原型模式详解 1. 什么是原型模式? 原型模式(Prototype Pattern)是一种创建型设计模式,它允许通过复制已有的对象来创建新的对象,而不是通过类实例化来创建新对象。通过这种方式,原型模式能够减少创建对象的开销,尤其是当对象的创建过程非常复杂或者耗费资源时。原型模…...
Spring @Async 深度解读:默认线程池执行器的配置与优化
在Spring中,Async注解用于异步执行方法。默认情况下,Async注解的任务是由一个线程池执行的。然而,这个默认的线程池是如何初始化的呢?本文将深入探讨这一过程,帮助你理解Spring异步任务背后的线程池执行器的初始化原理…...

手把手教你用护核纪元地心护核者用服务器开服联机
1、购买后登录服务器面板(百度莱卡云面板) 登录面板的信息在绿色的登陆面板按键下方,不是你的莱卡云账号 进入控制面板后会出现正在安装的界面,安装大约3分钟(如长时间处于安装中请联系我们的客服人员) 2、…...
Log4j 1.x如何升级到Log4j 2.x
Log4j 1.x升级到Log4j 2.x是一个涉及多个步骤的过程,主要包括删除旧版本、添加新版本依赖、配置新版本的配置文件等。以下是一个详细的升级步骤指南: 一、准备阶段 了解当前项目依赖: 检查项目中所有使用Log4j 1.x的地方,包括ja…...

CloudFlare问题与CDN问题
昨天将腾讯云的解析转移到Cloudflare中了,结果今天发现网站崩了,显示重定向次数过多,昨天估计是因为浏览器缓存,所以没有发现问题 问题一:强制HTTPS 当时看到CloudFlare的强制https时就想到了我的宝塔面板也开着强制h…...

[Linux]:文件(上)
✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. C语言文件操作 C语言文件操作接口如下,详情可参照——C语言文…...
flutter开发多端平台应用的探索 下 (跨模块、跨语言通信之平台通道)
前文 Flutter 是一个跨平台的开发框架,它允许开发者使用相同的代码库来构建 iOS、Android、Web 和桌面应用程序。 上文flutter开发多端平台应用的探索 上(基本操作)-CSDN博客列举了一些特定平台的case(桌面端菜单,鼠…...

第15-02章:理解Class类并获取Class实例
我的后端学习大纲 我的Java学习大纲 1、Java反射机制原理图: 源代码通过Javac编译得到字节码文件,当我执行到new一个对象的时候,字节码文件会通过ClassLoader被加载,然后得到一个Class类对象,存放在堆中,加…...

【Authing身份云-注册安全分析报告-无验证方式导致安全隐患】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 1. 暴力破解密码,造成用户信息泄露 2. 短信盗刷的安全问题,影响业务及导致用户投诉 3. 带来经济损失,尤其是后付费客户,风险巨大,造…...

idea插件推荐之Cool Request
Cool Request是一款基于IDEA的HTTP调试工具,可以看成是轻量版的postman,它会自动扫描项目代码中所有API路径,按项目分组管理。一个类被定义为Controller且其中的方法被RequestMapping或者XXXMapping注解标注以后就会被扫描到。 对应方法左侧会…...

从卫星和飞机等不同传感器方面由QGIS 遥感分析
在地理信息科学 (GIS) 中,遥感是指从远处获取有关地球表面特征信息的行为。遥感数据是从许多不同的平台获取而来,包括卫星、飞机和具有许多不同传感器的固定仪器,包括光谱图像(相机)和激光雷达。最常见的遥感数据形式是卫星和航空图像。 为了充分实现这些照片的价值,需要…...
什么是AIGC?有哪些免费工具?
AIGC(AI Generated Content),即“人工智能生成内容”,是指通过人工智能技术自动生成各种类型的数字内容。AIGC 让机器能够根据输入的信息或数据生成符合人类需求的文本、图像、音频、视频等内容,极大提高了内容创作的效…...

腾讯云升级多个云存储解决方案 以智能化存储助力企业增长
9月6日,在腾讯数字生态大会腾讯云储存专场上,腾讯云升级多个存储解决方案:Data Platform 数据平台解决方案重磅发布,数据加速器 GooseFS、数据处理平台数据万象、日志服务 CLS、高性能并行文件存储 CFS Turbo 等多产品全新升级&am…...
Kubernetes 集群初步部署
Kubernetes 集群初步部署 目标 本手册旨在指导您在多台虚拟机上部署一个基础的Kubernetes集群,并安装必要的工具和组件。 准备工作 确保所有虚拟机已经准备好,并且具有足够的资源来运行Kubernetes集群。虚拟机操作系统版本一致,推荐使用R…...

从源码到成品:直播美颜SDK与主播美颜工具的开发全流程
本篇文章,小编将带你深入了解从源码到成品的开发全流程,探讨如何构建一个功能完善的直播美颜SDK与主播美颜工具。 一、需求分析与技术规划 在开发任何工具之前,需求分析是第一步。在美颜工具的开发过程中,需要明确以下几点&…...

AMD EPYC 9004服务器内存配置深度分析:为何全通道填充是关键?
在一次技术沟通中,客户询问在部署AMD EPYC 9004服务器时,是否应该完全填充内存通道? 考虑到AMD正在用5年的更新周期替换其AMD EPYC 7002 “Rome”和Cascade Lake一代的服务器,他们认为通过减少内存插槽的填充,可以节省…...
redis的事务与管道有什么不同?
Redis 的事务(MULTI/EXEC)和管道(PIPELINE)都是为了执行多条命令,但它们的工作原理和目标不同。以下是两者的详细对比。 1. Redis 事务 (MULTI/EXEC) 特点: 事务的本质:Redis 事务是一组命令的…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...