当前位置: 首页 > news >正文

vue-watch监听功能(侦听器)详解使用

在Vue中,watch侦听器允许我们观察和响应Vue实例上数据的变化。当被侦听的数据发生变化时,可以执行异步操作或开销较大的操作,这是computed属性可能不适合的场景。watch侦听器提供了更灵活的方式来处理数据变化时的副作用。

基本用法

watch选项是一个对象,其键是需要观察的表达式(字符串形式),值是对应回调函数。当表达式的值发生变化时,会调用这个回调函数。回调函数接收两个参数:新值和旧值。

 

javascript复制代码

export default {
data() {
return {
question: '',
answer: 'I cannot give you an answer until you ask a question!'
}
},
watch: {
// 侦听question的变化
question(newVal, oldVal) {
this.answer = 'Waiting for you to stop typing...';
this.debouncedGetAnswer();
}
},
created() {
// 使用lodash的debounce函数来限制getAnswer的调用频率
this.debouncedGetAnswer = _.debounce(this.getAnswer, 500);
},
methods: {
getAnswer() {
if (this.question.includes('?')) {
this.answer = 'Thinking...';
// 这里模拟异步操作
setTimeout(() => {
this.answer = 'Answered ' + this.question;
}, 1000);
}
}
}
}

深度侦听

当需要侦听一个对象的属性时,标准的watch侦听器可能不会按预期工作,因为默认情况下,它不会侦听对象内部属性的变化。为了侦听对象内部属性的变化,可以使用deep: true选项。

 

javascript复制代码

watch: {
someObject: {
handler(newVal, oldVal) {
// 当someObject内部任何属性变化时执行
},
deep: true
}
}

立即执行

有时,你可能希望侦听器在组件创建后立即执行一次,而不是等待数据变化。这可以通过immediate: true选项来实现。

 

javascript复制代码

watch: {
someData: {
handler(newVal, oldVal) {
// 侦听逻辑
},
immediate: true // 组件创建时立即执行一次
}
}

注意事项

  • watch侦听器适用于观察数据变化后执行复杂逻辑或异步操作。
  • 过度使用watch可能会使组件难以理解和维护,特别是在大型项目中。
  • 当需要基于数据变化来更新数据时,通常优先考虑使用computed属性,因为它更高效且声明式。
  • 使用deep: true时要小心,因为它会深度遍历对象,这可能会导致性能问题。
  • immediate: true在某些情况下很有用,但也要谨慎使用,因为它会在侦听器创建后立即执行一次,这可能会与组件的初始渲染逻辑冲突。

相关文章:

vue-watch监听功能(侦听器)详解使用

在Vue中,watch侦听器允许我们观察和响应Vue实例上数据的变化。当被侦听的数据发生变化时,可以执行异步操作或开销较大的操作,这是computed属性可能不适合的场景。watch侦听器提供了更灵活的方式来处理数据变化时的副作用。 基本用法 watch选…...

8.第二阶段x86游戏实战2-实现瞬移

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 本次游戏没法给 内容参考于:微尘网络安全 工具下载: 链接:https://pan.baidu.com/s/1rEEJnt85npn7N38Ai0_F2Q?pwd6tw3 提…...

uts+uniapp踩坑记录(vue3项目

杂记: web-view方面 内嵌html使用web-view时,直接用 uni.postMessage({data: {action: message // 你要传的信息}}); 示例上写的是用 document.addEventListener(UniAppJSBridgeReady, function() { uni.postMessage({ data: { action: postMe…...

《深度学习》OpenCV 高阶 图像金字塔 用法解析及案例实现

目录 一、图像金字塔 1、什么是图像金字塔 2、图像金字塔作用 1)金字塔尺度间的图像信息补充 2)目标检测与识别 3)图像融合与拼接 4)图像增强与去噪 5)图像压缩与编码 二、用法解析 1、向下采样 1)概念…...

dirty pages , swapiness 查看SWAP占用进程

文章说了这么多的意思 就是不要过度分配不用的内存。虽然脏块不会写入swap,但是占了物理内存,浪费空间,可能导致进行了很多不必要的交换(虽然判断很少要进swap,判断要不要也要时间。。。)。 To verify whic…...

Spring Boot项目更改项目名称

背景:新项目开始前,往往需要初始化功能,拿到基础版本后更改项目对应的名称等信息。 更改步骤如下: 1、修改目录名称。 打开本地项目,右键修改项目名称。 2、修改maven项目的pom依赖 修改parent及modules项目名称&…...

Hive SQL基础语法及查询实践

目录 基础语法 1. 官网地址 2. 查询语句语法 基本查询(Select…From) 数据准备 (0)原始数据 (1)创建部门表 (2)创建员工表 (3)导入数据 全表和特定列查…...

k8s service如何实现流量转发

1 基本概念 Service:在Kubernetes(K8s)中,Service用于将流量转发到后端的Pod中。Service提供了一种稳定的网络入口,尽管后端的Pod可能会动态改变 kube-proxy: kube-proxy是Kubernetes集群中的核心组件之一&#xff0…...

每日一练:K个一组翻转链表

25. K 个一组翻转链表 - 力扣(LeetCode) 一、题目要求 给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。 k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#x…...

昨晚,OpenAI震撼发布o1大模型!我们正式迈入了下一个时代。

大半夜的,OpenAI抽象了整整快半年的新模型。 在没有任何预告下,正式登场。 正式版名称不叫草莓,草莓只是内部的一个代号。他们的正式名字,叫: 为什么取名叫o1,OpenAI是这么说的: For complex …...

MySql8.x---开窗函数

1、定义 语法结构: ** 开窗函数|聚合函数 over([分组函数] [排序函数] [自定义窗口]) ** 分组函数:partition by ...,根据指定的字段对表分组,分组字段可以有多个。省略时表示整个表为一组。 排序函数:order by ...&…...

图文讲解HarmonyOS应用发布流程

HarmonyOS应用的开发和发布过程可以分为以下几个步骤:证书生成、应用开发、应用签名和发布。 1. 证书生成: 在开始开发HarmonyOS应用之前,首先需要生成一个开发者证书。开发者证书用于标识应用的开发者身份并确保应用的安全性。可以通过Har…...

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预…...

经典负载调制平衡放大器(LMBA)设计-从理论到ADS仿真

经典负载调制平衡放大器(LMBA)设计-从理论到ADS仿真 ADS工程下载:经典负载调制平衡放大器(LMBA)设计-从理论到ADS仿真-ADS工程 参考论文: An Efficient Broadband Reconfigurable Power Amplifier Using Active Load…...

Web开发:基础Web开发的支持

创建项目&#xff1a; 添加依赖: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://mav…...

【LeetCode每日一题】——LCR 168.丑数

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目注意】六【题目示例】七【题目提示】八【解题思路】九【时间频度】十【代码实现】十一【提交结果】 一【题目类别】 优先队列 二【题目难度】 中等 三【题目编号】 LCR 168.丑数 四【题目描述…...

Day7 | Java框架 | SpringMVC

Day7 | Java框架 | SpringMVC SpringMVC简介SpringMVC 概述入门案例入门案例工作流程分析Controller 加载控制与业务bean加载控制&#xff08;SpringMVC & Spring&#xff09;PostMan 请求与响应请求映射路径请求方式&#xff08;不同类型的请求参数&#xff09;&#xff1…...

【网络通信基础与实践第二讲】包括互联网概述、互联网发展的三个阶段、互联网的组成、计算机网络的体系结构

一、互联网概述 计算机网络是由若干节点&#xff08;node&#xff09;和连接这些节点的链路&#xff08;link&#xff09;组成。 网络之间还可以通过路由器互联起来&#xff0c;这就构成了一个覆盖范围更大的计算机网络。这样的网络称为互联网。 网络把许多计算机连接在一起…...

CentOS7下安装Ruby3.2.4的实施路径

一、CentOS版本 [userzt ~]$ cat /etc/os-release NAME"CentOS Linux" VERSION"7 (Core)" ID"centos" ID_LIKE"rhel fedora" VERSION_ID"7" PRETTY_NAME"CentOS Linux 7 (Core)" ANSI_COLOR"0;31" CPE…...

Redis 实现原理或机制

Redis 是一个高性能的、基于内存的键值对存储系统&#xff0c;广泛用于缓存、会话管理、排行榜和消息队列等场景。它的高效性得益于其独特的实现原理和机制&#xff0c;Redis支持丰富的数据结构和多种持久化、复制、集群和发布/订阅功能&#xff0c;提供了灵活性和高可用性。 …...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...