当前位置: 首页 > news >正文

【极限、数学】 NOIP 2018 提高组初赛试题 第 7 题详解(线段长度期望)

在这里插入图片描述
在一条长度为 1 1 1 的线段上随机取两个点,则以这两个点为端点的线段的期望长度是( )。

考虑将一个线段上平均分布有 n ( n ≥ 2 ) n(n\geq 2) n(n2) 个节点,其中首尾均有一个节点,那么我们就将一个线段均分为 n − 1 n-1 n1 份。

不妨令第一个点取在第 i i i 个节点上,第二个点取在 j j j 上。不妨令 i ≤ j i \leq j ij,因为调换 i , j i,j i,j 对题意没有任何影响(显而易见)。

对于 i , j i,j i,j,我们共有 n ( n + 1 ) 2 \dfrac{n(n+1)}{2} 2n(n+1) 种取法。

假设 i = 1 i=1 i=1,则对于 j j j,长度总和为 ( n − 1 ) n 2 ( n − 1 ) \dfrac{(n-1)n}{2(n-1)} 2(n1)(n1)n

同理对于 i = 2 i=2 i=2,则总和为: ( n − 2 ) ( n − 1 ) 2 ( n − 1 ) \dfrac{(n-2)(n-1)}{2(n-1)} 2(n1)(n2)(n1)

因此对于所有 i i i,总和为: 0 × 1 + 1 × 2 + ⋯ + ( n − 1 ) n 2 ( n − 1 ) \dfrac{0\times1+1\times2+\dots+(n-1)n}{2(n-1)} 2(n1)0×1+1×2++(n1)n

证明:对于任意正整数 N N N,有 ∑ i = 1 N i ( i + 1 ) = N ( N + 1 ) ( N + 2 ) 3 \sum_{i=1}^{N}i(i+1) = \dfrac{N(N+1)(N+2)}{3} i=1Ni(i+1)=3N(N+1)(N+2)

考虑数学归纳法,对于 N = 1 N=1 N=1 显而易见等式成立。若 N N N 时成立,则对于 N + 1 N+1 N+1,有 ∑ i = 1 N + 1 i ( i + 1 ) = N ( N + 1 ) ( N + 2 ) 3 + ( N + 1 ) ( N + 2 ) = ( N + 1 ) ( N + 2 ) ( N + 3 ) 3 \sum_{i=1}^{N + 1}i(i+1) = \dfrac{N(N+1)(N+2)}{3} + (N+1)(N+2) = \dfrac{(N+1)(N+2)(N+3)}{3} i=1N+1i(i+1)=3N(N+1)(N+2)+(N+1)(N+2)=3(N+1)(N+2)(N+3),因此如果当 N N N 成立, N + 1 N+1 N+1 时等式也成立,得证。

因此原式= ( n − 1 ) n ( n + 1 ) 6 ( n − 1 ) = n ( n + 1 ) 6 \dfrac{(n-1)n(n+1)}{6(n-1)} =\dfrac{n(n+1)}{6} 6(n1)(n1)n(n+1)=6n(n+1)

所以期望值: n ( n + 1 ) 6 n ( n + 1 ) 2 = 1 3 \dfrac{\dfrac{n(n+1)}{6}}{\dfrac{n(n+1)}{2}} = \dfrac{1}{3} 2n(n+1)6n(n+1)=31

原题即为:当 n n n 接近正无穷大时的期望值,显而易见也是 1 3 \dfrac{1}{3} 31

相关文章:

【极限、数学】 NOIP 2018 提高组初赛试题 第 7 题详解(线段长度期望)

在一条长度为 1 1 1 的线段上随机取两个点,则以这两个点为端点的线段的期望长度是( )。 考虑将一个线段上平均分布有 n ( n ≥ 2 ) n(n\geq 2) n(n≥2) 个节点,其中首尾均有一个节点,那么我们就将一个线段均分为 n…...

《论网络安全体系设计》写作框架,软考高级系统架构设计师

论文真题 随着社会信息化的普及,计算机网络已经在各行各业得到了广泛的应用。目前,绝大多数业务处理几乎完全依赖计算机和网络执行,各种重要数据如政府文件、工资档案、财务账目和人事档案等均依赖计算机和网络进行存储与传输。另一方面&…...

这款开源的通用PDF处理神器,功能炸裂!

今天分享一款以PDF为中心的多功能办公学习工具箱软件,包含四大板块功能:PDF实用工具箱、Anki制卡神器、Anki最强辅助、视频笔记神器,软件功能众多且强大,熟练运用可以大幅提高办公和学习效率,绝对是您不可多得的效率神…...

RabbitMQ延迟消息——DelayExchange插件

什么是死信以及死信交换机 当一个队列中的消息满足下列情况之一时,可以成为死信: 1. 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false 2. 消息是一个过期消息,超时无人消费 3. 要投递的队列消…...

【系统规划与管理师】【案例分析】【考点】【答案篇】第5章 IT服务部署实施

【问题篇】☞【系统规划与管理师】【案例分析】【考点】【问题篇】第5章 IT服务部署实施 【移动端浏览】☞【系统规划与管理师】【案例分析】【模拟考题】章节考题汇总(第5章)(答案篇)(共24个知识点) 第5章…...

华为云服务器的数据库部署及管理

不管是终端数据上报到服务器进行存储,还是客户端的动态请求都需要用到数据库,因此这里对数据库的使用进行了一些记录,租用的是华为云的ECS弹性服务器(Ubuntu18)。下面以网页登录的账号信息Acount为例。 一、Mysql的安装…...

C#【必备技能篇】替换一个字节(byte)中连续几位(bit)的内容

文章目录 一、一个示例二、通用方法 一、一个示例 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace ConsoleApp1 {class Program{static void Main(string[] args){Method1();}public static…...

roboguide将tp程序转化为LS文本格式的方法

不同的软件版本可能操作不同,但是仍然可以参考文章中的办法。 我使用的版本如图所示: 1.首先,打开任意一个工程,如果没有,可以打开自带的示例。 如图,我打开了自带的示例,在帮助文档中可以找到…...

基于SpringBoot+Vue+MySQL的流浪猫狗宠物救助救援网站管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 在当今社会,随着宠物数量的激增及人们关爱动物意识的提升,流浪猫狗问题日益严峻。为解决这一问题,构建一套高效、便捷的流浪猫狗宠物救助救援网站管理系统显得尤为重要。本系统基于SpringBoot…...

I/O 多路复用:`select`、`poll`、`epoll` 和 `kqueue` 的区别与示例

I/O 多路复用是指在一个线程内同时监控多个文件描述符(File Descriptor, FD),以便高效地处理多个 I/O 事件。在 UNIX/Linux 和 BSD 系统中,select、poll、epoll、kqueue 都是实现 I/O 多路复用的系统调用。它们各有特点&#xff0…...

大数据之Flink(三)

9.3、转换算子 9.3.1、基本转换算子 9.3.1.1、映射map 一一映射 package transform;import bean.WaterSensor; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; impor…...

【HCIA-Datacom】IPv4地址介绍

| | 👉个人主页:Reuuse 希望各位多多支持!❀ | 👉HCIA专栏博客 | 最后如果对你们有帮助的话希望有一个大大的赞! | ⭐你们的支持是我最大的动力!⭐ | 目录 IPv4地址定义IPv4地址分类方式二级目录三级目录 I…...

maven父子工程多模块如何管理统一的版本号?

1.为什么要统一管理? maven父子工程多模块,每个模块还都可以独立存在,子模块往往通常希望和父工程保持一样的版本,如果每个工程单独定义版本号,后期变更打包也非常麻烦,如何维护一个全局的版本号呢&#x…...

JavaScript --函数的作用域(全局和局部)

全局作用域 全局作用域&#xff0c;就算不在一个script标签也能调用 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta nam…...

贪吃蛇项目实现(C语言)——附源码

前言 贪吃蛇是一款十分经典的游戏&#xff0c;其通过控制贪吃蛇的上下左右移动来吃食物&#xff0c;延长自己的身体&#xff0c;也会因为撞到墙体和自身而死亡。下面我们通过C语言来实现贪吃蛇。 1.技术要点 C语言枚举&#xff0c;结构体&#xff0c;链表&#xff0c;动态内…...

【C++】42道面试经典问题总结

C this指针是干什么用的&#xff1f; 假如一个类型定义了很多对象&#xff0c;类里面有很多定义的私有成员变量&#xff0c;共享一套成员方法。通过this指针这可以区分方法、变量是操作的哪个对象的。 C的new和delete&#xff0c;new[]和delete[]可以混用吗&#xff1f; 一般来…...

php 实现JWT

在 PHP 中&#xff0c;JSON Web Token (JWT) 是一种开放标准 (RFC 7519) 用于在各方之间作为 JSON 对象安全地传输信息。JWT 通常用于身份验证系统&#xff0c;如 OAuth2 或基于令牌的身份验证。 以下是一个基本的 PHP 实现 JWT 生成和验证的代码示例。 JWT 的组成部分 JWT …...

vue table id一样的列合并

合并场景&#xff1a;如果id一样&#xff0c;则主表列合并&#xff0c;子表列不做合并&#xff0c;可实现单行、多行合并&#xff0c;亲测&#xff01;&#xff01;&#xff01; 展示效果如图示&#xff1a; 组件代码&#xff1a; // table组件 :span-method"objectSpa…...

xshell密钥方式连接阿里云Linux

前提条件 有阿里云ECS linux实例安装好xshell工具 步骤 创建密钥对并绑定ECS实例 浏览器登录阿里云-->控制台-->ECS服务器-->网络与安全-->密钥对-->创建密钥对 根据提示填写密钥名称-->选中默认资源组-->创建 创建完成&#xff0c;会自动下载密钥对的…...

Wni11 下 WSL 安装 CentOS

Wni11 下 WSL 安装 CentOS 方法一、安装包安装下载包安装安装打开 CentOS1. 从 Windows 终端 打开2. 从 PowerShell 打开 方法二、导入 CentOS 的 tar 文件进行安装0. 查看版本&#xff08;可选&#xff09;1. 导出 Docker 容器到 tar 文件2. 将 tar 文件导入 WSL2.1. 导入 tar…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...