当前位置: 首页 > news >正文

【极限、数学】 NOIP 2018 提高组初赛试题 第 7 题详解(线段长度期望)

在这里插入图片描述
在一条长度为 1 1 1 的线段上随机取两个点,则以这两个点为端点的线段的期望长度是( )。

考虑将一个线段上平均分布有 n ( n ≥ 2 ) n(n\geq 2) n(n2) 个节点,其中首尾均有一个节点,那么我们就将一个线段均分为 n − 1 n-1 n1 份。

不妨令第一个点取在第 i i i 个节点上,第二个点取在 j j j 上。不妨令 i ≤ j i \leq j ij,因为调换 i , j i,j i,j 对题意没有任何影响(显而易见)。

对于 i , j i,j i,j,我们共有 n ( n + 1 ) 2 \dfrac{n(n+1)}{2} 2n(n+1) 种取法。

假设 i = 1 i=1 i=1,则对于 j j j,长度总和为 ( n − 1 ) n 2 ( n − 1 ) \dfrac{(n-1)n}{2(n-1)} 2(n1)(n1)n

同理对于 i = 2 i=2 i=2,则总和为: ( n − 2 ) ( n − 1 ) 2 ( n − 1 ) \dfrac{(n-2)(n-1)}{2(n-1)} 2(n1)(n2)(n1)

因此对于所有 i i i,总和为: 0 × 1 + 1 × 2 + ⋯ + ( n − 1 ) n 2 ( n − 1 ) \dfrac{0\times1+1\times2+\dots+(n-1)n}{2(n-1)} 2(n1)0×1+1×2++(n1)n

证明:对于任意正整数 N N N,有 ∑ i = 1 N i ( i + 1 ) = N ( N + 1 ) ( N + 2 ) 3 \sum_{i=1}^{N}i(i+1) = \dfrac{N(N+1)(N+2)}{3} i=1Ni(i+1)=3N(N+1)(N+2)

考虑数学归纳法,对于 N = 1 N=1 N=1 显而易见等式成立。若 N N N 时成立,则对于 N + 1 N+1 N+1,有 ∑ i = 1 N + 1 i ( i + 1 ) = N ( N + 1 ) ( N + 2 ) 3 + ( N + 1 ) ( N + 2 ) = ( N + 1 ) ( N + 2 ) ( N + 3 ) 3 \sum_{i=1}^{N + 1}i(i+1) = \dfrac{N(N+1)(N+2)}{3} + (N+1)(N+2) = \dfrac{(N+1)(N+2)(N+3)}{3} i=1N+1i(i+1)=3N(N+1)(N+2)+(N+1)(N+2)=3(N+1)(N+2)(N+3),因此如果当 N N N 成立, N + 1 N+1 N+1 时等式也成立,得证。

因此原式= ( n − 1 ) n ( n + 1 ) 6 ( n − 1 ) = n ( n + 1 ) 6 \dfrac{(n-1)n(n+1)}{6(n-1)} =\dfrac{n(n+1)}{6} 6(n1)(n1)n(n+1)=6n(n+1)

所以期望值: n ( n + 1 ) 6 n ( n + 1 ) 2 = 1 3 \dfrac{\dfrac{n(n+1)}{6}}{\dfrac{n(n+1)}{2}} = \dfrac{1}{3} 2n(n+1)6n(n+1)=31

原题即为:当 n n n 接近正无穷大时的期望值,显而易见也是 1 3 \dfrac{1}{3} 31

相关文章:

【极限、数学】 NOIP 2018 提高组初赛试题 第 7 题详解(线段长度期望)

在一条长度为 1 1 1 的线段上随机取两个点,则以这两个点为端点的线段的期望长度是( )。 考虑将一个线段上平均分布有 n ( n ≥ 2 ) n(n\geq 2) n(n≥2) 个节点,其中首尾均有一个节点,那么我们就将一个线段均分为 n…...

《论网络安全体系设计》写作框架,软考高级系统架构设计师

论文真题 随着社会信息化的普及,计算机网络已经在各行各业得到了广泛的应用。目前,绝大多数业务处理几乎完全依赖计算机和网络执行,各种重要数据如政府文件、工资档案、财务账目和人事档案等均依赖计算机和网络进行存储与传输。另一方面&…...

这款开源的通用PDF处理神器,功能炸裂!

今天分享一款以PDF为中心的多功能办公学习工具箱软件,包含四大板块功能:PDF实用工具箱、Anki制卡神器、Anki最强辅助、视频笔记神器,软件功能众多且强大,熟练运用可以大幅提高办公和学习效率,绝对是您不可多得的效率神…...

RabbitMQ延迟消息——DelayExchange插件

什么是死信以及死信交换机 当一个队列中的消息满足下列情况之一时,可以成为死信: 1. 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false 2. 消息是一个过期消息,超时无人消费 3. 要投递的队列消…...

【系统规划与管理师】【案例分析】【考点】【答案篇】第5章 IT服务部署实施

【问题篇】☞【系统规划与管理师】【案例分析】【考点】【问题篇】第5章 IT服务部署实施 【移动端浏览】☞【系统规划与管理师】【案例分析】【模拟考题】章节考题汇总(第5章)(答案篇)(共24个知识点) 第5章…...

华为云服务器的数据库部署及管理

不管是终端数据上报到服务器进行存储,还是客户端的动态请求都需要用到数据库,因此这里对数据库的使用进行了一些记录,租用的是华为云的ECS弹性服务器(Ubuntu18)。下面以网页登录的账号信息Acount为例。 一、Mysql的安装…...

C#【必备技能篇】替换一个字节(byte)中连续几位(bit)的内容

文章目录 一、一个示例二、通用方法 一、一个示例 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace ConsoleApp1 {class Program{static void Main(string[] args){Method1();}public static…...

roboguide将tp程序转化为LS文本格式的方法

不同的软件版本可能操作不同,但是仍然可以参考文章中的办法。 我使用的版本如图所示: 1.首先,打开任意一个工程,如果没有,可以打开自带的示例。 如图,我打开了自带的示例,在帮助文档中可以找到…...

基于SpringBoot+Vue+MySQL的流浪猫狗宠物救助救援网站管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 在当今社会,随着宠物数量的激增及人们关爱动物意识的提升,流浪猫狗问题日益严峻。为解决这一问题,构建一套高效、便捷的流浪猫狗宠物救助救援网站管理系统显得尤为重要。本系统基于SpringBoot…...

I/O 多路复用:`select`、`poll`、`epoll` 和 `kqueue` 的区别与示例

I/O 多路复用是指在一个线程内同时监控多个文件描述符(File Descriptor, FD),以便高效地处理多个 I/O 事件。在 UNIX/Linux 和 BSD 系统中,select、poll、epoll、kqueue 都是实现 I/O 多路复用的系统调用。它们各有特点&#xff0…...

大数据之Flink(三)

9.3、转换算子 9.3.1、基本转换算子 9.3.1.1、映射map 一一映射 package transform;import bean.WaterSensor; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; impor…...

【HCIA-Datacom】IPv4地址介绍

| | 👉个人主页:Reuuse 希望各位多多支持!❀ | 👉HCIA专栏博客 | 最后如果对你们有帮助的话希望有一个大大的赞! | ⭐你们的支持是我最大的动力!⭐ | 目录 IPv4地址定义IPv4地址分类方式二级目录三级目录 I…...

maven父子工程多模块如何管理统一的版本号?

1.为什么要统一管理? maven父子工程多模块,每个模块还都可以独立存在,子模块往往通常希望和父工程保持一样的版本,如果每个工程单独定义版本号,后期变更打包也非常麻烦,如何维护一个全局的版本号呢&#x…...

JavaScript --函数的作用域(全局和局部)

全局作用域 全局作用域&#xff0c;就算不在一个script标签也能调用 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta nam…...

贪吃蛇项目实现(C语言)——附源码

前言 贪吃蛇是一款十分经典的游戏&#xff0c;其通过控制贪吃蛇的上下左右移动来吃食物&#xff0c;延长自己的身体&#xff0c;也会因为撞到墙体和自身而死亡。下面我们通过C语言来实现贪吃蛇。 1.技术要点 C语言枚举&#xff0c;结构体&#xff0c;链表&#xff0c;动态内…...

【C++】42道面试经典问题总结

C this指针是干什么用的&#xff1f; 假如一个类型定义了很多对象&#xff0c;类里面有很多定义的私有成员变量&#xff0c;共享一套成员方法。通过this指针这可以区分方法、变量是操作的哪个对象的。 C的new和delete&#xff0c;new[]和delete[]可以混用吗&#xff1f; 一般来…...

php 实现JWT

在 PHP 中&#xff0c;JSON Web Token (JWT) 是一种开放标准 (RFC 7519) 用于在各方之间作为 JSON 对象安全地传输信息。JWT 通常用于身份验证系统&#xff0c;如 OAuth2 或基于令牌的身份验证。 以下是一个基本的 PHP 实现 JWT 生成和验证的代码示例。 JWT 的组成部分 JWT …...

vue table id一样的列合并

合并场景&#xff1a;如果id一样&#xff0c;则主表列合并&#xff0c;子表列不做合并&#xff0c;可实现单行、多行合并&#xff0c;亲测&#xff01;&#xff01;&#xff01; 展示效果如图示&#xff1a; 组件代码&#xff1a; // table组件 :span-method"objectSpa…...

xshell密钥方式连接阿里云Linux

前提条件 有阿里云ECS linux实例安装好xshell工具 步骤 创建密钥对并绑定ECS实例 浏览器登录阿里云-->控制台-->ECS服务器-->网络与安全-->密钥对-->创建密钥对 根据提示填写密钥名称-->选中默认资源组-->创建 创建完成&#xff0c;会自动下载密钥对的…...

Wni11 下 WSL 安装 CentOS

Wni11 下 WSL 安装 CentOS 方法一、安装包安装下载包安装安装打开 CentOS1. 从 Windows 终端 打开2. 从 PowerShell 打开 方法二、导入 CentOS 的 tar 文件进行安装0. 查看版本&#xff08;可选&#xff09;1. 导出 Docker 容器到 tar 文件2. 将 tar 文件导入 WSL2.1. 导入 tar…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...