人工智能物联网的去中心化和分布式学习:全面综述、新兴挑战和机遇
这篇论文的标题是《Decentralized and Distributed Learning for AIoT: A Comprehensive Review, Emerging Challenges, and Opportunities》,作者是Hanyue Xu, Kah Phooi Seng, Li Minn Ang, 和 Jeremy Smith。论文发表在IEEE Access期刊上,接收日期为2024年6月11日,接受日期为2024年6月22日,发布日期为2024年7月2日,当前版本日期为2024年7月29日。
论文的主要内容可以概括为以下几个部分:
摘要:
- 论文讨论了人工智能物联网(AIoT)的兴起,以及它在智能系统部署中的作用。
- 由于数据隐私的担忧和物联网设备产生的数据量巨大,去中心化和分布式学习方法正在取代传统的集中式学习。
- 论文深入探讨了AIoT的背景,特别关注分布式和去中心化学习机制的演变,这些机制不需要集中式数据收集,符合GDPR以增强数据隐私。
- 论文还探讨了AI算法在这些分布式设置中的适应性,评估了它们优化系统性能和学习效能的潜力。
关键词:
- 人工智能物联网(AIoT)
- 分布式学习
- 分布式联邦学习
- 去中心化学习
- 人工智能
- 图形化学习
引言:
- 论文介绍了物联网(IoT)和人工智能(AI)算法的快速发展,以及它们在AIoT系统中的集成。
- AIoT在智能电网、交通和智能城市等领域取得了前所未有的成功。
- 论文讨论了AI算法在AIoT中的挑战,包括计算开销和数据存储资源需求。
AIoT的基本架构:
- AIoT架构基于IoT系统,但会有一些变化。
- 论文介绍了端层、边缘层、雾层和云层的功能和它们在分布式和去中心化学习框架中的对应关系。
AIoT机器学习架构的演变:
- 论文从集中式学习到分布式学习,再到最近的去中心化学习架构的演变进行了详细概述。
- 讨论了新兴的分布式和去中心化学习框架,如联邦学习、分割学习、混合分割联邦学习等。
AI技术在AIoT中的分布式和去中心化学习:
- 论文讨论了机器学习、深度学习、基于图的学习、强化学习等AI技术在分布式和去中心化学习中的应用。
A. 基于机器学习的框架
- 支持向量机(SVM):用于分类和回归分析的监督学习算法。在AIoT中,SVM可以通过分布式学习来优化,如FedSVM,它通过分层联邦学习方法减少边缘到雾计算到云层的通信开销,并增强工业物联网数据的隐私安全性。
- 基于树的学习:包括决策树和梯度提升决策树(GBDT)。这些算法在处理非独立同分布(non-IID)数据时面临挑战,但可以通过联邦学习框架进行优化,以保护数据隐私。
- 聚类:无监督学习方法,通过联邦学习框架进行优化,可以在不共享数据的情况下对数据进行分组,解决分布式或去中心化环境中的统计异质性问题。
B. 基于深度学习的框架
- 结构化数据学习:包括卷积神经网络(CNN)和循环神经网络(RNN),如长短期记忆网络(LSTM)。这些网络处理大型、结构化数据集,如图像、语音、文本或时间序列数据。联邦学习和分割学习框架被用来优化这些模型在资源受限的边缘设备上的训练。
- 生成对抗网络(GAN):在分布式学习中,GAN可以解决数据不足的问题,通过生成新的数据来增强模型性能。
- 基于图的学习:图神经网络(GNN)用于处理图结构数据,如社交网络或推荐系统。在AIoT中,图学习可以通过联邦学习来优化,以保护数据隐私并处理分布式数据。
C. 强化学习
- 深度强化学习(DRL):结合了深度学习的感知能力和强化学习的决策能力。在分布式学习中,DRL可以优化联邦学习中的设备选择,以加速模型收敛并解决非IID数据的偏差问题。
D. 分布式学习和去中心化学习的应用
- 智能工业物联网(IIoT):AI技术在IIoT中的应用包括预测性维护、故障诊断和优化生产过程。
- 精准农业:通过分析土壤、气候和作物数据来提高作物产量和资源利用效率。
- 智能城市:AI技术在智能城市中的应用包括交通管理、能源分配和公共安全。
- 智能家居:AI技术可以学习用户的偏好,自动调整家庭环境,提高居住舒适度。
- 智能医疗保健:AI技术在医疗保健中的应用包括疾病诊断、患者监护和个性化治疗计划。
论文强调,尽管AI技术在AIoT中的分布式和去中心化学习中具有巨大潜力,但仍面临数据隐私、实时学习、异构性管理等挑战。未来的研究需要解决这些问题,以充分利用AIoT的潜力。
AIoT系统中分布式学习和去中心化学习的应用:
- 论文讨论了分布式学习和去中心化学习在智能工业物联网、精准农业、智能城市、智能家居和智能医疗等领域的应用。
开放性挑战和机遇:
- 论文提出了在AIoT中分布式学习和去中心化学习面临的挑战,包括数据隐私和模型安全、实时协作学习、激励机制、多模态分布式和去中心化学习、异构性挑战等。
结论:
- 论文总结了分布式和去中心化学习在AIoT中的研究进展,并提出了未来的研究方向。
作者信息:
- 论文列出了作者的背景信息和研究兴趣。
这篇论文提供了一个全面的AIoT领域中分布式和去中心化学习的综述,包括了从理论到实践的多个方面,以及当前面临的挑战和未来的研究方向。
相关文章:

人工智能物联网的去中心化和分布式学习:全面综述、新兴挑战和机遇
这篇论文的标题是《Decentralized and Distributed Learning for AIoT: A Comprehensive Review, Emerging Challenges, and Opportunities》,作者是Hanyue Xu, Kah Phooi Seng, Li Minn Ang, 和 Jeremy Smith。论文发表在IEEE Access期刊上,接收日期为2…...

滑动窗口算法—最小覆盖子串
题目 ”最小覆盖子串“问题,难度为Hard,题目如下: 给你两个字符串 S 和 T,请你在 S 中找到包含 T 中全部字母的最短子串。如果 S 中没有这样一个子串,则算法返回空串,如果存在这样一个子串,则可…...

应用案例|开源 PolarDB-X 在互联网安全场景的应用实践
背景介绍 中盾数科集团始创于2012年,是由网络安全服务而发展起来的科技型、多元化的企业集团。旗下包括网络安全服务、信创一体化服务、箱式液冷、区块链、位置服务、视觉服务等六大板块,业务覆盖湖南、甘肃、贵州等多个省份。 业务挑战 中盾集团基于A…...

【大数据】MapReduce的“内存增强版”——Spark
【大数据】MapReduce的“内存增强版”——Spark 文章脉络 Spark架构 Spark-core SparkConf 和 SparkContext RDD Spark集群 Spark-sql 在大数据时代,数据处理和分析成为企业竞争的重要手段。Hadoop作为大数据处理的基石,其核心组件MapReduce在众多…...

o1模型:引领AI技术在STEM领域的突破与应用
o1模型是OpenAI最新推出的大型语言模型,它在多个领域展现出了卓越的能力,被认为是AI技术发展的一个重要里程碑。以下是对o1模型的详细介绍和分析: o1模型的简介和性能评估 o1模型在物理、化学、生物学等领域的基准任务上达到了博士生水平&…...
数据库系统 第57节 数据库迁移
数据库迁移是一个复杂的过程,涉及到将数据从一个数据库系统转移到另一个数据库系统。这个过程通常需要仔细规划和执行,以确保数据的完整性和可用性。以下是数据库迁移的一些关键方面: 数据迁移工具: 这些工具可以帮助自动化迁移过…...

【主机入侵检测】Wazuh规则详解
前言 Wazuh 规则是一组用XML格式编写的条件,它们定义了应该如何解释日志数据。这些规则由Wazuh Manager使用,用于在日志消息中检测特定的模式或行为,并相应地生成警报或响应。它们在威胁检测中扮演着至关重要的角色,因为它们允许系…...

redis有序集合写入和求交集的速度
背景 团队小伙伴做了一个需求。大概的需求是有很多的图片作品,图片作品有一些类别,每个人进入到每个类别的作品业,根据权重优先查看权重最高的的作品,权重大概是基于每个人对该作品的浏览计算,浏览过的作品放在最后展…...
微服务之服务注册与发现:Etcd、Zookeeper、Consul 与 Nacos 比较
在微服务架构中,服务注册与发现是实现服务动态管理和负载均衡的关键。本文将对四款主流的服务注册与发现工具——Etcd、Zookeeper、Consul、Nacos进行深入对比,从功能、性能、一致性、生态集成、应用场景等多个维度展开分析,帮助您选择最适合…...
桥接模式详解和分析JDBC中的应用
🎯 设计模式专栏,持续更新中, 欢迎订阅:JAVA实现设计模式 🛠️ 希望小伙伴们一键三连,有问题私信都会回复,或者在评论区直接发言 桥接模式 文章目录 桥接模式桥接模式的四个核心组成:…...

【python - 函数】
一、交互式会话 在与 Python 的交互式会话中,你可以在提示符 >>> 后键入一些 Python 代码,Python 解释器会读取并执行你键入的各种命令。 要启动交互式会话,请在终端 (Mac/Unix/Linux) 中键入 python3 或在 Windows 中打开 Python…...
scipy中稀疏矩阵特征值问题概述
在Python的scipy库中,这三种算法——ARPACK、LOBPCG、和AMG——都是用于求解稀疏矩阵特征值问题的数值方法。它们各自有不同的特性和适用场景,以下是详细说明: 1. ARPACK (Arnoldi Package) ARPACK(Arnoldi Package)…...

浅谈线性表——队列
文章目录 一、什么是队列?二、队列底层三、自我实现一个队列3.1、链式存储3.1.1、单向链表实现队列的实现代码3.1.2、双向链表实现队列的实现代码 3.2、顺序存储3.2.1、循环队列的实现代码 一、什么是队列? 队列是只允许在一端进行插入数据操作…...

2-94 基于matlab的最佳维纳滤波器的盲解卷积算法
基于matlab的最佳维纳滤波器的盲解卷积算法。维纳滤波将地震子波转换为任意所需要的形态。维纳滤波不同于反滤波,它是在最小平方的意义上为最 佳。基于最佳纳滤波理论的滤波器算法是莱文逊(Wiener—Levinson)算法。程序提供了4种子波和4种期望输出:零延迟…...

【提示词】浅谈GPT等大模型中的Prompt
Prompt是人工智能(AI)提示词,是一种利用自然语言来指导或激发人工智能模型完成特定任务的方法。在AI语境中,Prompt是一种自然语言输入,通常指的是向模型提出的一个请求或问题,这个请求或问题的形式和内容会…...

最强AI照片说话Windows一体包下载地址,口型合成音频驱动图片,免安装,下载即用
照片数字一键整合包:点击下载 一键安装包,简单一键启动,即刻使用,秒级体验。 目前效果最好的音频驱动图片说话的软件,比sadtalker、MuseTalk更清晰,效果更好,可以作为DID heygen的开源平替。原…...

Windows下使用cmake编译OpenCV
Windows下使用cmake编译OpenCV cmake下载OpenCV下载编译OpenCV cmake下载 下载地址:https://cmake.org/download/ 下载完成,点击选择路径安装即可 OpenCV下载 下载地址:https://github.com/opencv/opencv/releases/tag/4.8.1因为我们是编译…...
设计模式---中介者模式
设计模式---中介者模式 定义与设计思路中介者模式的引入:机场控制塔中介者模式的设计框架 定义与设计思路 定义:用一个中介对象来封装一系列对象交互。中介者使各对象不需要相互引用,从而使其耦合松散,而且可以独立地改变它们之间…...

六氟化硫密度微水在线监测配套5孔M12格兰头航空插头插座
我们将为大家介绍如何使用六氟化硫密度微水在线监测配套5孔M12格兰头连接器。在本教程中,我们将向您展示简单易懂的步骤,让您轻松掌握。 所需材料: 1. 六氟化硫密度微水在线监测器 2. 5孔M12格兰头连接器 3. 电源线 4. 符合要求的电缆 5…...

linux -L4.linux 暂停和启动进程
接第3课,L3 第3课-查看进程 通过端口号,查看对应的进程 netstat -tulnp | grep :9513暂停这个进程 Kill -STOP 5376重启这个进程 Kill -CONT 5376要查看特定PID对应的端口,你可以使用netstat命令结合grep工具来过滤输出。以下是一个基于L…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...