当前位置: 首页 > news >正文

动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目

一、介绍

动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。


在本项目中,旨在通过人工智能技术实现常见动物的自动识别。该系统以Python作为主要编程语言,使用TensorFlow框架构建了ResNet50卷积神经网络模型,主要用于动物图像分类任务。项目中选择了四种常见的动物类别——猫、狗、鸡和马,作为识别的目标。通过收集这些动物的大量图像数据集,经过数据预处理后,模型在训练过程中通过卷积层提取图像特征,最终生成一个能够有效识别动物类别的高精度模型。

在模型训练完成后,识别准确率较高的模型文件被保存为H5格式,用于后续的推理和应用。为了使该系统更加实用,本项目在Django框架的基础上开发了一个用户友好的网页端操作界面。用户可以通过该界面上传一张包含动物的图片,系统将自动对其进行分析并识别出动物的类别。整个流程从用户交互到模型推理均可在Web端实现,极大地方便了普通用户使用这一动物识别系统。

该项目不仅展现了卷积神经网络在图像识别中的强大能力,也为学习者提供了实践机器学习和深度学习技术的机会,同时利用Django框架开发了一个功能完备的Web应用,使得人工智能技术更加贴近现实应用。

二、系统效果图片展示

image-20230716192115159

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/ohtysy62ob1glubc

四、TensorFlow介绍

TensorFlow是由谷歌开发的一个开源机器学习框架,广泛应用于深度学习和神经网络的研究与开发。其核心是一个灵活的计算图结构,能够在不同硬件平台(如CPU、GPU和TPU)上高效运行,从而满足从研究到生产环境中的各种需求。TensorFlow支持各种机器学习算法,特别是神经网络算法,涵盖了从图像处理、自然语言处理到时间序列分析等多个领域。

TensorFlow的优势在于其模块化设计和强大的扩展性。开发者可以利用其内置的高级API,如Keras,快速构建和训练深度学习模型。此外,TensorFlow还提供了低级API,以满足开发者对模型和算法细节进行精细控制的需求。通过这些API,开发者可以定义任意复杂的神经网络结构,如卷积神经网络(CNN)、循环神经网络(RNN)等。

在图像识别领域,TensorFlow的卷积神经网络(CNN)技术尤为强大。CNN通过卷积层、池化层和全连接层对图像进行特征提取和分类,可以有效识别图像中的物体类别。典型的应用场景包括自动驾驶中的道路障碍物检测、医疗影像分析中的疾病诊断、以及安防监控中的人脸识别等。

以下是一个基于TensorFlow和Keras实现的简单手写数字识别案例代码,使用的是经典的MNIST数据集。该代码演示了如何构建卷积神经网络(CNN)来识别手写数字。

# 导入必要的库
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()# 数据预处理,将图像归一化到0到1之间,并调整输入的形状以适应CNN的输入格式
train_images = train_images.reshape((train_images.shape[0], 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((test_images.shape[0], 28, 28, 1)).astype('float32') / 255# 构建卷积神经网络模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')  # 10个输出节点,对应0-9的数字分类
])# 查看模型的结构
model.summary()# 编译模型,使用Adam优化器,损失函数为稀疏分类交叉熵
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))# 可视化训练过程中的损失和准确率变化
plt.plot(history.history['accuracy'], label='训练准确率')
plt.plot(history.history['val_accuracy'], label='验证准确率')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()# 评估模型在测试集上的表现
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f"在测试集上的准确率为: {test_acc:.4f}")# 进行预测,展示测试集中前几张图片的预测结果
predictions = model.predict(test_images)# 显示预测结果与真实标签的对比
def plot_image(i, predictions_array, true_label, img):predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]plt.grid(False)plt.xticks([])plt.yticks([])plt.imshow(img[:, :, 0], cmap=plt.cm.binary)predicted_label = np.argmax(predictions_array)color = 'blue' if predicted_label == true_label else 'red'plt.xlabel(f"{predicted_label} ({true_label})", color=color)# 展示前5张测试图片和预测结果
num_rows = 1
num_cols = 5
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(5):plt.subplot(num_rows, num_cols, i+1)plot_image(i, predictions, test_labels, test_images)
plt.show()

代码说明:

  1. 数据预处理:MNIST数据集包含28x28像素的手写数字图像,首先将其调整为CNN需要的输入格式(四维张量:(样本数, 宽度, 高度, 通道数))并归一化到0到1之间。
  2. 模型构建:使用了三层卷积层,每层后跟一个最大池化层,最后使用全连接层和Softmax输出层进行分类。
  3. 模型训练:使用Adam优化器进行5轮训练,并通过训练和验证集的准确率绘制训练过程曲线。
  4. 模型评估:在测试集上评估模型性能,并对一些测试图片进行预测,显示预测的标签与真实标签的对比。

这个案例展示了如何用TensorFlow和Keras进行图像识别任务,特别是手写数字识别。

相关文章:

动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目

一、介绍 动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件&am…...

【STL】priority_queue 基础,应用与操作

c在C的标准模板库(STL)中,priority_queue 是一个基于堆的容器适配器,用于实现优先级队列。它本质上是一个最大堆(Max-Heap),即每次取出元素时,始终取出优先级最高的元素。本文将详细…...

tasklist命令的应用实例

tasklist命令的应用实例 引言 在系统管理和故障排查过程中,了解当前正在运行的进程信息是至关重要的。Windows操作系统提供了一个强大的命令行工具——tasklist,它可以帮助用户查看当前系统中所有正在运行的进程及其相关信息。掌握这个命令的使用&…...

基于协同过滤算法+PHP的新闻推荐系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于协同过滤算法PHPMySQL的新…...

196页满分PPT | 集团流程优化及IT规划项目案例

细阐述了XX集团信息化建设的总体目标、指导原则、信息架构规划、应用系统架构规划、IT基础设施架构规划以及IT管控模式设计。文档内容涵盖了从现状分析到未来三年信息化建设目标的明确,以及如何通过IT系统支持集团的战略升级。 背景痛点 总体信息架构规划 总体信息架…...

Android 使用高德地图实现道格拉斯 - 普克算法

道格拉斯 - 普克算法(Douglas-Peucker algorithm)是一种用于曲线简化的算法。 一、算法的作用 该算法的主要目的是在保持曲线形状特征的前提下,通过减少数据点的数量来简化曲线。这在地图绘制、图形处理、地理信息系统等领域有广泛的应用。例…...

OpenAI GPT o1技术报告阅读(2)- 关于模型安全性的测试案例

✨报告阅读:使用大模型来学习推理(Reason) 首先是原文链接:https://openai.com/index/learning-to-reason-with-llms/ 接下来我们看一个简单的关于模型安全性的测试,当模型被问到一个有风险的话题时,会如何思考并回答用户呢&…...

Stream流的思想和获取Stream流

首先介绍流的概念: 流可以理解为一条流水线,在这条流水线中有许多操作,比如筛选所需要的数据,输出打印等, 经过这条流水线,可以获取到自己所需要的数据: -->所以: Stream流的作…...

go语言中的切片详解

1.概念 在Go语言中,切片(Slice)是一种基于数组的更高级的数据结构,它提供了一种灵活、动态的方式来处理序列数据。切片在Go中非常常用,因为它们可以动态地增长和缩小,这使得它们比固定大小的数组更加灵活。…...

ElK 8 收集 Nginx 日志

1. 说明 elk 版本:8.15.0 2. 启个 nginx 有 nginx 可以直接使用。我这里是在之前环境下 docker-compose.yml 中启动了个 nginx: nginx:restart: alwaysimage: nginx:1.26.1ports:- "80:80"- "443:443"volumes:#- ./nginx/html:/…...

Xv6驱动(四):CLINT

阅读材料 Xv6代码:memlayout.h、start.c、kernelvec.S教材5.4节 CLINT内存映射 实际上,CLINT还包括若干个MSIP寄存器,用来触发软件中断,但是在Xv6中不考虑软件中断,因此这些寄存器也不用考虑 // core local interr…...

【LInux】HTTPS是如何实现安全传输的

1. 客户端发起HTTPS连接请求 当浏览器请求一个HTTPS网址时,客户端(例如浏览器)会向服务器发起一个HTTPS请求。 2. 服务器返回数字证书 服务器收到请求后,会向客户端发送包含公钥的数字证书。数字证书由**权威认证机构&#xff…...

英飞凌PSoC4000T的GPIO中断示例工程

关于PSoC4000T的初步介绍见:英飞凌MCU第五代高性能CAPSENSE技术PSoC4000T_psoc 4000t-CSDN博客 下面这个工程,在modustoolbox中可编译、下载到开发板、debug调试。 编译时会用到mtb_shared这个库: 已经pdl这个periperal driver library库:...

物联网(IoT)中基于深度学习的入侵检测系统的综合综述

这篇论文是一篇全面的综述,标题为“A comprehensive survey on deep learning-based intrusion detection systems in Internet of Things (IoT)”,作者是Qasem Abu Al-Haija和Ayat Droos。论文主要探讨了在物联网(IoT)环境中基于深度学习的入侵检测系统…...

《成都体育学院学报》

投稿指南 成都体育学院学报属于体育类型期刊,由成都体育学院主办,国内统一刊号:51-1097/G8,国际标准刊号:1001-9154,双月,面向国内外公开发行。 一、来稿必须是作者独立取得的原创性学术研究成…...

Flask-JWT-Extended登录验证, 不用自定义

"""安装:pip install Flask-JWT-Extended创建对象 初始化与app绑定jwt JWTManager(app) # 初始化JWTManager设置 Cookie 的选项:除了设置 cookie 的名称和值之外,你还可以指定其他的选项,例如:过期时间 (max_age)&#xff1…...

rpm 与 yum

11 rpm -qa | grep openssh rpm与 yum CentOS仅删除软件包本身而不删除依赖 https://blog.csdn.net/kangshuaibi/article/details/125472204...

几种修改docker默认存储位置的方法

需求 docker容器存放目录磁盘空间满了,需要转移数据,修改Docker默认存储位置 解决方法 方法1:迁移到新目录 停止docker服务。 1systemctl stop docker; //每个liunx版本的命令不一样。创建新的docker目录,执行命令df…...

istio中如何使用serviceentry引入外部服务

假设需要引入一个外部服务,外部服务ip为10.10.102.90,端口为32033. 引入到istio中后,我想通过域名gindemo.test.ch:9090来访问这个服务。 serviceentry yaml内容如下: apiVersion: networking.istio.io/v1beta1 kind: ServiceEn…...

模仿抖音用户ID加密ID的算法MB4E,提高自己平台ID安全性

先看抖音的格式 对ID加密的格式 MB4EENgLILJPeQKhJht-rjcc6y0ECMk_RGTceg6JBAA 需求是 同一个ID 比如 413884936367560 每次获取得到的加密ID都是不同的,最终解密的ID都是413884936367560 注意这是一个加密后可解密原文的方式,不是单向加密 那么如下进行…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

云计算——弹性云计算器(ECS)

弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

在rocky linux 9.5上在线安装 docker

前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如&#xff1a…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...