八股文-多线程、并发
八股文-多线程、并发
最近学到了一种方法,可以用于简历项目经验编写以及面试题目的回答
STAR法则:在什么背景下,你需要解决什么问题,你做了啥,得到了什么结果
情境(Situation): 描述你面对的特定情境或背景。
任务(Task): 说明你面临的具体任务或挑战。
行动(Action): 阐述你采取了什么行动来解决问题或完成任务。
结果(Result): 指出你的行动带来了什么结果,以及你取得了什么成就。
参考:https://blog.csdn.net/qq_37037348/article/details/139144523
多线程是啥?为啥要有多线程?
在单个程序中可以同时运行多个线程执行不同的任务。学习了一个操作系统上面运行多个进程的方法,一个进程上面用多个线程管理。计算机最早出现的时候还没有操作系统,程序直接运行在计算机上,这样一个计算机的功能有限,资源利用率也不高。所以就出现了操作系统,通过进程的方式实现一个计算机可以同时运行多个程序,同时一个程序里面又需要处理多种任务,如果所以任务用一个线程来执行,那么多个任务只能排队处理,同样效率低下,无法好好的利用资源(内存、磁盘IO、CPU等)。
并行处理、充分利用资源 → 提高性能和效率、改善用户体验
使用多线程带来的问题?
线程安全问题(一致性问题)、死锁(相互等待)、资源争抢(CPU时间、内存、I/O)、编程复杂、可见性(内存分为工作内存和主内存,这样做主要是为了提高效率)、有序性问题(指令重排)
怎么解决这些问题?
同步机制(volatile、synchronized、原子类、Lock显式锁)
指令重排是什么?为啥要指令重排?
编译器或者处理器对指令执行顺序进行调整,为了提高执行效率。对于重排的指令会遵循以下原则:不影响单线程执行的语义。但是多线程就不能够保证了(会出现可见性问题、有序性问题)。多线程下正常执行语句也不能够保证原子性,所以基于这两种场景,为了保证并发安全性,就出现了锁和其他的一些机制。主要包括volatile,synchronized,显式锁,原子类等
解决指令重排的方法:
Java提供了一些机制来解决指令重排带来的问题:
volatile关键字:通过使用volatile关键字,可以确保变量的读写操作对所有线程都是可见的,并且保证操作的有序性。volatile变量的写操作对任意后续的volatile变量的读操作都是可见的。(内存屏障阻止重排序,https://juejin.cn/post/6901283327160877063)
synchronized关键字:使用synchronized可以确保同一时间只有一个线程可以执行同步代码块,从而保证操作的原子性和有序性。
final关键字:对于final字段,一旦初始化完成,其值就不会被改变。这可以确保在构造函数中对final字段的赋值在构造函数结束后对其他线程是可见的。
原子类:Java提供了一系列的原子类(如AtomicInteger),这些类利用CAS(Compare-And-Swap)操作来保证操作的原子性,从而避免指令重排的问题。
指令重排为啥能够提高执行效率?
这个就是编译器和处理器做的一些优化,主要原则是提高各个硬件(CPU、内存、寄存器)的利用率,减少空闲时间
volatile是啥?有什么用?
这个就得说到JMM,Java内存模型(Java Memory Model,简称JMM)。内存模型把内存分为线程工作内存和主内存。加了volatile修饰的变量就会直接利用本地内存,这样多个线程set操作会直接从线程内存同步到主内存,get操作会直接从主内存同步到线程内存。
JMM的三个核心特性包括:
可见性:确保一个线程对共享变量的修改能够及时地被其他线程观察到。例如,使用volatile关键字修饰的变量,可以保证对该变量的读写操作对所有线程都是即时可见的。
原子性:确保操作是不可分割的,即当一个线程执行原子操作时,其他线程不能插入执行其他操作。Java中的原子操作包括对基本数据类型的赋值操作,以及synchronized块或方法。
有序性:JMM通过happens-before关系来确保操作的有序性。如果一个操作A happens-before 操作B,那么在执行操作B之前,操作A的结果已经对操作B可见,且操作A的执行顺序在操作B之前。
指令重排序破坏了可见性和有序性。
参考:https://www.jianshu.com/p/a67dc1c11088
双层校验锁:https://www.jianshu.com/p/c6a42c543abf
线程的生命周期
https://www.jianshu.com/p/c22ff5cc4a8f

synchronized底层实现?锁升级?
https://blog.csdn.net/qq_32907195/article/details/108906260
https://blog.csdn.net/m0_69519887/article/details/138546440
https://xiaolincoding.com/interview/juc.html#synchronized%E5%92%8Creentrantlock%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8%E5%9C%BA%E6%99%AF
https://blog.csdn.net/zhouzhenghu123/article/details/140086311
https://cloud.tencent.com/developer/article/1911691
利用对象实现锁,每个对象都有一个相关联的监视器(monitor),监视器有4个重要的变量,计数器、当前线程,waitSet和entryList。


JDK 1.6 之前,synchronized 是重量级锁。JDK 1.6 之前,synchronized 是重量级锁,为了优化,就有了锁升级

处理锁升级还有其他优化手段,锁消除、锁粗化、锁自旋。
synchronized 核心优化方案主要包含以下 4 个:
锁膨胀:synchronized 从无锁升级到偏向锁,再到轻量级锁,最后到重量级锁的过程,它叫做锁膨胀也叫做锁升级。JDK 1.6 之前,synchronized 是重量级锁,也就是说 synchronized 在释放和获取锁时都会从用户态转换成内核态,而转换的效率是比较低的。但有了锁膨胀机制之后,synchronized 的状态就多了无锁、偏向锁以及轻量级锁了,这时候在进行并发操作时,大部分的场景都不需要用户态到内核态的转换了,这样就大幅的提升了 synchronized 的性能
。
锁消除:指的是在某些情况下,JVM 虚拟机如果检测不到某段代码被共享和竞争的可能性,就会将这段代码所属的同步锁消除掉,从而到底提高程序性能的目的。(比如单线程使用某些线程安全的容器,有可能不会加锁;实现是JIT 即时编译时,通过对运行上下文的扫描,经过逃逸分析,去除不可能存在共享资源竞争的锁,通过这种方式消除没有必要的锁,可以节省毫无意义的请求锁时间)
锁粗化:将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。(加锁解锁也需要消耗资源)
自适应自旋锁:指通过自身循环,尝试获取锁的一种方式,优点在于它避免一些线程的挂起和恢复操作,因为挂起线程和恢复线程都需要从用户态转入内核态,这个过程是比较慢的,所以通过自旋的方式可以一定程度上避免线程挂起和恢复所造成的性能开销。
内核态和用户态
https://www.jianshu.com/p/011f4062d372
用户态和内核态是程序运行的两种状态,
线程调度部分操作底层也会依赖操作系统,比如重量级锁,会依赖操作系统的。这个时候就相当于从用户态切换到内核态,然后获取到锁,又会切回来,这个过程是耗时操作。轻量级锁都是在用户态直接完成,不用惊动操作系统,是一种优化手段。
JVM对于os kernel来说呢就相当于是一个普通的应用程序,那么你想申请一把锁,对线程进行调度。实现这件事的时候需要向操作系统内核申请,操作系统内核帮你管理这些线程,管理好了之后反馈给你。这个过程简单来说就是 从用户态到内核态的访问,访问完了由内核态再反馈回来,这个就叫重量级锁。
逃逸分析
https://blog.csdn.net/sky15256567734/article/details/106786870
逃逸分析(Escape Analysis)是编译器优化技术中的一种,它用于分析对象的作用域,判断对象是否在方法中创建后,被外部方法所引用或者作为参数传递到其他方法中。基于这种分析,编译器可以进行一些优化,比如:
栈上分配:如果一个对象不会逃逸到方法之外,那么编译器可以将这个对象的内存分配从堆内存转移到栈内存。由于栈内存的分配和回收速度通常比堆内存快,这样可以提高程序的运行效率。
同步省略:如果一个对象不会被其他线程访问,即不会逃逸到线程之外,那么编译器可以省略对这个对象的同步操作,从而提高性能。
标量替换:对于不会逃逸的对象,如果其内部状态不需要封装在对象中,编译器可以将其替换为基本类型的集合,即标量。这样可以减少内存分配和提高缓存的局部性。
死代码消除:如果分析出某些代码路径不会执行,编译器可以将其优化掉。
在Java中,逃逸分析对于实现即时编译器(JIT)中的优化至关重要,尤其是在运行时编译的环境下,如HotSpot虚拟机。通过逃逸分析,JIT编译器能够在运行时决定是否可以应用上述优化。
需要注意的是,逃逸分析并不是在所有的场景下都能带来性能提升,有时候过度优化可能会导致代码膨胀,甚至因为优化错误而引入bug。因此,编译器在进行逃逸分析时需要权衡优化的收益和风险。
synchronized 和 lock的区别
可中断锁
https://blog.csdn.net/m0_50116974/article/details/140164578
怎么使用多线程?
继承Thread、实现Runnable接口、实现Callable接口(可以根据FutureTask拿到返回结果)、线程池
参考:
https://zhuanlan.zhihu.com/p/334737925
https://www.cnblogs.com/java1024/p/11950129.html
https://blog.csdn.net/weixin_44797490/article/details/91006241
线程池怎么用?原理?执行流程是咋样的?
相关文章:
八股文-多线程、并发
八股文-多线程、并发 最近学到了一种方法,可以用于简历项目经验编写以及面试题目的回答 STAR法则:在什么背景下,你需要解决什么问题,你做了啥,得到了什么结果 情境(Situation): 描…...
xtu oj 折纸
折纸# 题目描述# 一个长为a,宽为b矩形的纸,我们沿b边(左边)的中点与右上顶点的边折叠,求左上顶点在折叠以后离下边的距离? 输入# 第一行是一个整数T(1≤T≤10000),表示样例的个数。 以后每行一个样例,为两个整数1≤a,b≤1000。…...
传知代码-多示例AI模型实现病理图像分类
代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 概述 本文将基于多示例深度学习EPLA模型实现对乳腺癌数据集BreaKHis_v1的分类。EPLA模型是处理组织病理学图像的经典之作。EPLA模型是基于多示例学习来进行了,那么多示例学习模型对处理病理学图像具有…...
Java知识点小结3:内存回收
文章目录 对象引用强引用软引用(SoftReference)弱引用(WeakReference)考一考 虚引用(PhantomReference)总结 垃圾回收新生代老年代永生代 内存管理小技巧尽量使用直接量使用StringBuilder和StringBuffer进行…...
LeetCode746:使用花费最小爬楼梯
题目链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode) 代码如下 class Solution { public:int minCostClimbingStairs(vector<int>& cost) {int m cost.size();if(m 1) return min(cost[1], cost[0]);if(m 0) return cost[0]…...
列表、数组排序总结:Collections.sort()、list.sort()、list.stream().sorted()、Arrays.sort()
列表类型 一.Collections.sort() Collections.sort()用于List类型的排序,其提供了两个重载方法: 1.sort(List<T> list) (1)List指定泛型时只能指定引用数据类型,也就是说无法用于基本数据类型的排序。 &am…...
【资料分析】刷题日记3
第一套 √ 考点:基期比重差很温柔的题 普通专科女生 占比 52.5% - 1.7% 50.8% 成人本专科女生 占比 57.8% - 4.6% 53.2% 相比降低了2.4% 知比重和部分量,求整体在花生老师的解法中体会啥叫适当约分 0.1899 / 47.8% / 87.5% 》0.19 / (4…...
基于SpringBoot+Vue的商场停车场管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSpringBootVueMySQL的…...
4. 密码协议
4. 密码协议 (1) 协议的基本概念 协议是一种在两个或多个参与者之间进行通信的规范,它定义了参与者之间的交互方式、消息格式和通信过程。协议的目的是确保通信的可靠性和安全性,防止信息被篡改、伪造或泄露。 (2) 密码协议分类及基本密码协议 密码协议是用于加密和解密数…...
基于嵌入式的智能物流柜( 触摸屏/0.96寸oled屏)
演示 智能物流柜(基础版) 智能物流柜(升级版) 前言 这是本人在大二在学校接的一个简单的实验室项目,之前发布了一个,由于那是在暑假,家里器材有限,代码敲完之后,用面包板…...
VSCode创建C++项目和编译多文件
前言 在刚安装好VSCode后,我简单尝试了仅main.cpp单文件编译代码,没有问题,但是当我尝试多文件编译时,就出现了无法识别cpp文件。 内容 创建项目 首先点击左上角“文件”;在菜单中选择“打开文件夹”;在…...
7个提升网站分页体验的 CSS 和 JavaScript 代码片段
文章目录 前言正文1.简洁直观的悬停分页效果2.实时显示页码的分页3.适合响应式设计的多功能分页4.专为移动设备优化的分页5.无数字的极简分页设计6.触屏友好的分页7.结合无限滚动与分页的设计 总结 前言 分页是内容丰富的网站中不可缺少的导航工具,能帮助用户更轻松…...
C++——用带有默认参数的函数实现,求两个整数或三个整数中的最大数。
没注释的源代码 #include <iostream> using namespace std; int max(int a,int b,int c0); int main() { int a,b,c; cout<<"请输入三个整数:"; cin>>a>>b>>c; cout<<"三个整数的最大值是&am…...
对商品分类系统的若干问题的思考
科学研究的目的就是研究事物的特征,并根据共同的特征加以分类 商品分类是商业,制造业中最普遍的活动,几乎所有的企业,电商平台都要对销售的商品,使用的原材料(BOM)进行分类和编号。 商品分类貌似…...
javascript中Number 类型 在实际开发中常用的一些操作方法
在 JavaScript 中,Number 类型是非常基础的数据类型之一,用于表示整数和浮点数。除了基本的算术运算外,还有许多内置的方法可以帮助你处理数字。下面列举了一些在实际开发中常用的 Number 类型的操作方法: 1. 转换方法 Number()…...
部分解决FDTD安装后,matlab指令fopen报错
今天在新的win11电脑上安装FDTD时,发现在C:\Program Files目录中并没有Lumerical文件夹,把激活文件粘贴过去后虽然能正常启动,但对于matlab link FDTD过程中无法响应以下代码: setenv(PATH, [getenv(PATH) ;C:\Program Files\Lum…...
[python3] 处理函数的重试
tenacity是一个 Python 库,用于简化重试逻辑的实现。它提供了装饰器和工具函数,使得在函数执行失败时可以自动重试。以下是对tenacity库的详细介绍: 一、安装 可以使用pip安装tenacity: pip install tenacity二、主要概念和功能…...
鸿蒙开发之ArkTS 界面篇 一
建好一个工程后,右侧可以预览,看到效果,效率十分可以,如图: State message: string 鸿蒙开发入门篇; 这个字符串改成什么,右侧就显示什么 Entry是类装饰器,可以简单的理解为程序入口的必须的装饰器&…...
嵌入式Linux学习笔记(6)-线程处理、线程同步、线程池(c语言实现)
一、概述 线程是一种轻量级的并发执行的机制。线程是进程中的一个实体,它执行在同一进程的上下文中,共享同一内存空间,但拥有独立的栈空间。 C语言的线程使用pthread库实现,通过包含头文件 pthread.h 来使用相关的函数和数据类型 …...
【HTTP】请求“报头”(Host、Content-Length/Content-Type、User-Agent(简称 UA))
Host 表示服务器主机的地址和端口号 URL 里面不是已经有 Host 了吗,为什么还要写一次? 这里的 Host 和 URL 中的 IP 地址、端口什么的,绝大部分情况下是一样的,少数情况下可能不同当前我们经过某个代理进行转发。过程中…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
