当前位置: 首页 > news >正文

使用llama.cpp 在推理MiniCPM-1.2B模型

llama.cpp 是一个开源项目,它允许用户在C++中实现与LLaMA(Large Language Model Meta AI)模型的交互。LLaMA模型是由Meta Platforms开发的一种大型语言模型,虽然llama.cpp本身并不包含LLaMA模型的训练代码或模型权重,但它提供了一种方式来加载预先训练好的模型,并使用它们进行文本生成等任务。

特点

  • 轻量级:相比于使用Python和深度学习框架如PyTorch或TensorFlow,llama.cpp是一个纯C++实现,可以更轻松地部署到资源受限的环境中。
  • 独立性:它不需要依赖于复杂的外部库,这使得它在某些情况下更容易集成到现有系统中。
  • 可移植性:由于它是用C++编写的,因此理论上可以在任何支持C++的平台上运行。

使用方法

获取源码

首先,你需要从GitHub获取llama.cpp的源代码:

git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
安装依赖
sudo apt install build-essential ninja-build cmake
编译

然后,你需要编译项目。这通常涉及安装必要的依赖项(如CMake),然后运行编译命令:

cmake -GNinja -Bbuild_ninja
cmake --build build_ninja
下载模型
sudo apt install git git-lfs
git clone https://www.modelscope.cn/OpenBMB/MiniCPM-1B-sft-q4_1-gguf.git
运行示例

一旦编译完成,你可以尝试运行一些控制台示例程序来测试模型的功能。例如,你可以执行一个简单的交互式聊天程序:


build_ninja/bin/llama-cli -m ../MiniCPM-1B-sft-q4_1-gguf/MiniCPM-1B-sft-q4_1.gguf -cnv --chat-template gemma
加载模型

llama.cpp提供了加载预先训练好的模型的方法。你需要将模型文件下载到本地,并通过API指定路径加载模型。

文本生成

使用加载的模型,你可以通过输入提示(prompt)来生成文本。API提供了设置生成参数(如prompt、最大长度等)的方法。

注意事项

虽然llama.cpp提供了一个有趣的方式来使用预训练的语言模型,但在实际应用中还需要注意以下几点:

  • 模型许可:确保你有权合法地使用你想要加载的模型。
  • 性能限制:尽管llama.cpp是为资源受限的环境设计的,但它可能在高性能计算环境中不如专门优化过的框架高效。
  • 维护和支持:考虑到这是一个相对较小的项目,可能没有像大公司支持的框架那样的活跃社区或官方支持。

相关文章:

使用llama.cpp 在推理MiniCPM-1.2B模型

llama.cpp 是一个开源项目,它允许用户在C中实现与LLaMA(Large Language Model Meta AI)模型的交互。LLaMA模型是由Meta Platforms开发的一种大型语言模型,虽然llama.cpp本身并不包含LLaMA模型的训练代码或模型权重,但它…...

分布式环境中,接口超时重试带来的的幂等问题如何解决?

目录标题 幂等不能解决接口超时吗?幂等的重要性什么是幂等?为什么需要幂等?接口超时了,到底如何处理? 如何设计幂等?幂等设计的基本流程实现幂等的8种方案1.selectinsert主键/唯一索引冲突(常用)2.直接insert 主键…...

设计一个推荐系统:使用协同过滤算法

设计一个推荐系统:使用协同过滤算法 在当今数据驱动的时代,推荐系统已经成为了许多在线平台(如电商、社交媒体和流媒体服务)不可或缺的一部分。推荐系统通过分析用户的行为和偏好,向用户推荐可能感兴趣的内容或产品。本文将详细介绍如何设计一个基于协同过滤算法的推荐系…...

Linux 基本指令(二)

目录 1. more指令 2. less指令(重要) 3. head指令 4. tail指令 5. date指令 (1)可以通过选项来指定格式: ​编辑 (2)在设定时间方面 (3)时间戳 6. cal指令 7. find指令 8. grep指令 9. alias指令 10. zip指令与unzip指令 (1). zip指令 (2). unzip指令…...

Facebook的用户隐私保护:从争议到革新

Facebook早期的数据收集方式引发了隐私担忧。平台的快速增长和用户数据的大规模收集使得隐私问题逐渐显现。尤其是在2018年,剑桥分析事件暴露了数千万用户数据被不当使用的问题。这一事件揭示了Facebook在数据保护方面的严重漏洞,引发了公众对隐私保护的…...

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23 本期,我们对大语言模型在表情推荐, 软件安全和 自动化软件漏洞检测等方面如何应用,提供几篇最新的参考文章。 1 Semantics Preserving Emoji Recommendation with Large Language Mod…...

C++(学习)2024.9.20

目录 C面向对象的基础知识 this指针 概念 功能 1.类内调用成员 2.区分重名的成员变量和局部变量 3. 链式调用 static关键字 1.静态局部变量 2.静态成员变量 3.静态成员函数 4.单例设计模式 const关键字 1.const修饰成员函数 2.const修饰对象 3.const修饰成员变量…...

让AI激发创作力:OpenAI分享5位专业作家利用ChatGPT写作的案例技巧

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…...

UEFI EDK2框架学习 (一)

01 Shell界面打印 执行qemu指令后 qemu-system-x86_64 -drive ifpflash,formatraw,fileOVMF.fd -nographic -net none出现shell界面 02 在UEFI shell中创建APP 创建SimplestApp文件夹以及SimplestApp.c、SimplestApp.inf cd edk2 mkdir SimplestAppuuidgen // generate …...

基于 BERT 的自定义中文命名实体识别实现

基于 BERT 的自定义中文命名实体识别实现 在自然语言处理中,命名实体识别(Named Entity Recognition,NER)是一项重要的任务,旨在识别文本中的特定实体,如人名、地名、组织机构名等。本文将介绍如何使用 BERT 模型实现自定义中文命名实体识别,并提供详细的代码分析和解读…...

中秋节特别游戏:给玉兔投喂月饼

🖼️ 效果展示 📜 游戏背景 在中秋这个充满诗意的节日里,玉兔因为贪玩被赶下人间。在这个温柔的夜晚,我们希望通过一个小游戏,让玉兔感受到人间的温暖和关怀。🐰🌙 🎮 游戏设计 人…...

python pdf转word或excel

python pdf转word或excel 直接上源码 main import gradio as gr import pdf2docx as p2d import Pdf2Excel as p2e import utils.id.IdUtil as idUtildef convert_pdf_to(pdf_file, pdf_pwd, pdf_to_type):if pdf_to_type "docx":# Convert PDF to DOCXcv p2d.C…...

GNU链接器(LD):位置计数器(.)功能及实例解析

0 参考资料 GNU-LD-v2.30-中文手册.pdf GNU linker.pdf1 前言 一个完整的编译工具链应该包含以下4个部分: (1)编译器 (2)汇编器 (3)链接器 (4)lib库 在GNU工具链中&…...

学习记录:js算法(四十三):翻转二叉树

文章目录 翻转二叉树我的思路网上思路递归栈 总结 翻转二叉树 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点 图一: 图二: 示例 1:(如图一) 输入:root [4,2,7,1…...

关于 SQL 的 JOIN 操作

关于 SQL 的 JOIN 操作 在关系型数据库中,数据通常分布在多个表中。为了进行有效的数据检索,我们需要从不同的表中组合数据,这时就需要使用 JOIN 操作。本文将深入探讨 SQL 中不同类型的 JOIN 及其用法,以帮助你在数据库查询中更…...

聊聊AUTOSAR:基于Vector MICROSAR的TC8测试开发方案

技术背景 车载以太网技术作为汽车智能化和网联化的重要组成部分,正逐步成为现代汽车网络架构的核心,已广泛应用于汽车诊断(如OBD)、ECU软件更新、智能座舱系统、高清摄像头环视泊车系统等多个领域。 在这个过程中,ET…...

ES6中迭代器与生成器知识浅析

ES5及以下版本对JS几种集合,要存取数据一般需要用循环语句来遍历,就要初始化一个或多个变量来记录每一次循环在数据集合中的位置或数据值。这里容易出现超出边界问题,造成程序出错。另外,对于多次循环也需要跟踪理清各个变量关系及…...

unix中的vfork函数

一、前言 本文介绍unix中的vfork函数,vfork函数功能和fork函数类似,也是用于创建新的进程,只不过调用vfork函数创建的子进程将共享父进程的进程空间,且只有当子进程调用exec()或者exit()函数后,父进程才会继续运行。 …...

Android 用线程池实现一个简单的任务队列(Kotlin)

关于线程池,Kotlin和java的使用方式一样 在Android中,很多人喜欢用Handler的postDelayed() 去实现延时任务. 要使用postDelayed(),去实现延时任务队列,就不可避免要使用递归. 但是这样做,代码的简洁性,和书写的简易,就远不如使用线程池. 使用线程池的简单程度: private val…...

遨游信息技术的浩瀚宇宙:探索MySQL的深邃奥秘

遨游信息技术的浩瀚宇宙:探索MySQL的深邃奥秘 在信息技术的浩瀚宇宙中,MySQL犹如一颗璀璨的星辰,以其稳定、高效、灵活的特性,照亮了无数开发者与数据管理者的前行之路。作为关系型数据库管理系统的佼佼者,MySQL不仅承…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

【笔记】结合 Conda任意创建和配置不同 Python 版本的双轨隔离的 Poetry 虚拟环境

如何结合 Conda 任意创建和配置不同 Python 版本的双轨隔离的Poetry 虚拟环境&#xff1f; 在 Python 开发中&#xff0c;为不同项目配置独立且适配的虚拟环境至关重要。结合 Conda 和 Poetry 工具&#xff0c;能高效创建不同 Python 版本的 Poetry 虚拟环境&#xff0c;接下来…...