当前位置: 首页 > news >正文

Python 课程18-SQLAlchemy

前言

SQLAlchemy 是一个功能强大的 Python SQL 工具包和对象关系映射(ORM)库,它使得开发者能够通过 Python 代码与数据库进行交互,而不必编写 SQL 查询。SQLAlchemy 提供了对多种数据库的支持,包括 MySQL、PostgreSQL、SQLite 等,适用于从简单的小项目到复杂的大型系统。

本教程将带你从 SQLAlchemy 的基础操作(如连接数据库、创建模型、执行查询等)到高级功能(如事务管理、关系映射等),并提供详细的代码示例。


目录

  1. SQLAlchemy 基础

    • 安装 SQLAlchemy
    • 创建数据库连接
    • 使用 SQLAlchemy Core 执行原生 SQL 查询
  2. ORM 基础

    • 定义模型(Classes as Tables)
    • 创建表结构
    • 插入、查询、更新、删除数据
  3. 关系映射

    • 一对多关系
    • 多对多关系
    • 级联操作
  4. 事务与连接池

    • 事务管理
    • 使用连接池提高性能
  5. 高级功能

    • 查询构造器与过滤器
    • 自定义查询与聚合操作

1. SQLAlchemy 基础

安装 SQLAlchemy

通过 pip 安装 SQLAlchemy:

pip install sqlalchemy

对于 MySQL 或 PostgreSQL 这样的数据库,你还需要安装相应的驱动程序:

pip install pymysql  # 对于 MySQL
pip install psycopg2  # 对于 PostgreSQL

创建数据库连接

SQLAlchemy 的基础在于创建与数据库的连接,你可以通过 create_engine() 函数来创建引擎对象,它代表了数据库连接的核心。

  • 连接 SQLite 数据库(SQLite 是一个轻量级数据库,适用于小型项目):
from sqlalchemy import create_engine# 创建 SQLite 引擎
engine = create_engine('sqlite:///example.db', echo=True)
  •  连接 MySQL 数据库
engine = create_engine('mysql+pymysql://username:password@localhost/mydatabase')
  •  连接 PostgreSQL 数据库
engine = create_engine('postgresql+psycopg2://username:password@localhost/mydatabase')

echo=True 会打印生成的 SQL 语句,帮助调试。

使用 SQLAlchemy Core 执行原生 SQL 查询

除了 ORM,SQLAlchemy 还提供了 Core API,用于直接执行 SQL 查询。

  • 创建表
from sqlalchemy import MetaData, Table, Column, Integer, Stringmetadata = MetaData()# 定义表结构
users_table = Table('users', metadata,Column('id', Integer, primary_key=True),Column('name', String),Column('age', Integer)
)# 创建表
metadata.create_all(engine)
  • 插入数据
from sqlalchemy import insert# 插入数据
stmt = insert(users_table).values(name='Alice', age=25)
with engine.connect() as conn:conn.execute(stmt)
  •  查询数据
from sqlalchemy import select# 查询数据
stmt = select(users_table)
with engine.connect() as conn:result = conn.execute(stmt)for row in result:print(row)
  • 更新与删除数据
from sqlalchemy import update, delete# 更新数据
stmt = update(users_table).where(users_table.c.name == 'Alice').values(age=30)
with engine.connect() as conn:conn.execute(stmt)# 删除数据
stmt = delete(users_table).where(users_table.c.name == 'Alice')
with engine.connect() as conn:conn.execute(stmt)

2. ORM 基础

定义模型(Classes as Tables)

在 SQLAlchemy ORM 中,表结构通过 Python 类表示。每个类代表数据库中的一张表,类的属性代表表中的列。

  • 定义模型类
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, StringBase = declarative_base()class User(Base):__tablename__ = 'users'  # 表名id = Column(Integer, primary_key=True)name = Column(String)age = Column(Integer)def __repr__(self):return f"<User(name={self.name}, age={self.age})>"

创建表结构

使用 Base.metadata.create_all() 创建模型类对应的表结构。

Base.metadata.create_all(engine)

插入、查询、更新、删除数据

  • 创建数据库会话

为了与数据库交互,SQLAlchemy 使用会话(Session)对象。它是数据库连接的一个高层次接口。

from sqlalchemy.orm import sessionmakerSession = sessionmaker(bind=engine)
session = Session()
  •  插入数据
# 插入数据
new_user = User(name='Bob', age=22)
session.add(new_user)
session.commit()
  •  查询数据
# 查询所有用户
users = session.query(User).all()
for user in users:print(user)# 查询特定条件的数据
user = session.query(User).filter_by(name='Bob').first()
print(user)
  •  更新数据
# 更新 Bob 的年龄
user = session.query(User).filter_by(name='Bob').first()
user.age = 23
session.commit()
  • 删除数据
# 删除用户
user = session.query(User).filter_by(name='Bob').first()
session.delete(user)
session.commit()

3. 关系映射

一对多关系

在数据库中,一对多关系是非常常见的。可以使用 SQLAlchemy 定义这样的关系,例如,一个用户可以有多个地址。

  • 定义一对多关系
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationshipclass Address(Base):__tablename__ = 'addresses'id = Column(Integer, primary_key=True)email = Column(String)user_id = Column(Integer, ForeignKey('users.id'))user = relationship('User', back_populates='addresses')User.addresses = relationship('Address', order_by=Address.id, back_populates='user')

在这个模型中,UserAddress 之间建立了一对多的关系。

  • 插入与查询关系数据
new_user = User(name='Charlie', age=30)
new_address = Address(email='charlie@example.com', user=new_user)session.add(new_user)
session.add(new_address)
session.commit()# 查询用户及其地址
user = session.query(User).filter_by(name='Charlie').first()
print(user.addresses)  # 输出用户的地址列表

多对多关系

在多对多关系中,两个表之间通过一个中间表来关联。

  • 定义多对多关系
from sqlalchemy import Tableassociation_table = Table('association', Base.metadata,Column('user_id', Integer, ForeignKey('users.id')),Column('group_id', Integer, ForeignKey('groups.id'))
)class Group(Base):__tablename__ = 'groups'id = Column(Integer, primary_key=True)name = Column(String)User.groups = relationship('Group', secondary=association_table, back_populates='users')
Group.users = relationship('User', secondary=association_table, back_populates='groups')
  •  插入与查询多对多关系数据
# 创建用户与群组
new_group = Group(name='Admins')
new_user = User(name='Alice', age=25)
new_user.groups.append(new_group)session.add(new_user)
session.commit()# 查询用户的群组
user = session.query(User).filter_by(name='Alice').first()
print(user.groups)  # 输出用户所在的群组

级联操作

级联操作可以在删除或更新主表数据时自动影响相关的表。可以通过 cascade 参数来控制级联行为。

  • 定义级联删除
User.addresses = relationship('Address', back_populates='user', cascade='all, delete-orphan')

此设置意味着如果删除一个 User,它的 Address 记录也会被删除。


4. 事务与连接池

事务管理

在数据库操作中,事务管理非常重要,尤其是在处理批量插入、更新和删除时。

  • 手动管理事务
session = Session()try:new_user = User(name='David', age=35)session.add(new_user)session.commit()
except:session.rollback()  # 如果出现错误,回滚事务raise
finally:session.close()

使用连接池提高性能

SQLAlchemy 提供了对数据库连接池的支持,以提高数据库访问的性能。你可以通过在创建引擎时指定连接池配置来管理连接。

  • 设置连接池
engine = create_engine('mysql+pymysql://username:password@localhost/mydatabase',pool_size=5,  # 连接池的大小max_overflow=10,  # 当连接池用尽时,最多允许额外创建的连接数pool_timeout=30,  # 等待连接池的超时时间(秒)pool_recycle=3600  # 每隔一小时回收一次连接,以避免长时间的空闲连接
)

这种配置可以防止频繁建立和关闭数据库连接,尤其在需要高效访问数据库的场景中极为重要。


5. 高级功能

查询构造器与过滤器

SQLAlchemy ORM 提供了丰富的查询构造功能,使得我们能够以面向对象的方式生成复杂的查询。以下是一些常用的查询构造方式:

  • 查询所有记录
users = session.query(User).all()
for user in users:print(user)
  • 过滤查询
# 按名字过滤
users = session.query(User).filter_by(name='Alice').all()# 使用条件表达式
users = session.query(User).filter(User.age > 30).all()
  •  排序与限制
# 按年龄排序
users = session.query(User).order_by(User.age).all()# 只返回前 5 个用户
users = session.query(User).limit(5).all()
  •  联接查询(查询多个表):
# 查询用户和他们的地址
results = session.query(User, Address).join(Address).all()
for user, address in results:print(f'{user.name} lives at {address.email}')
  • 计数、求和与聚合操作
from sqlalchemy import func# 计算用户数量
user_count = session.query(func.count(User.id)).scalar()# 计算用户的平均年龄
average_age = session.query(func.avg(User.age)).scalar()

自定义查询与聚合操作

SQLAlchemy 的 func 模块使得我们能够使用数据库中的聚合函数,如 COUNTSUMMAX 等。

  • 聚合查询
# 查询用户的最大年龄
max_age = session.query(func.max(User.age)).scalar()# 计算特定条件下的总人数
count = session.query(func.count(User.id)).filter(User.age > 30).scalar()

原生 SQL 查询

如果需要执行复杂的原生 SQL 查询,SQLAlchemy 也提供了直接执行原生 SQL 的能力。

  • 执行原生 SQL
result = session.execute('SELECT * FROM users WHERE age > :age', {'age': 30})
for row in result:print(row)

通过这种方式,你可以自由使用数据库特有的 SQL 语句。


结论

        通过本教程,你已经详细了解了 SQLAlchemy 的基本与高级功能,从建立数据库连接、创建表结构、到复杂的查询与事务管理等。SQLAlchemy 提供了两种主要的使用模式:

  • SQLAlchemy Core:用于执行原生 SQL 操作,适用于需要精准控制数据库查询的场景。
  • SQLAlchemy ORM:为开发者提供了更加 Pythonic 的方式来管理数据库模型,隐藏了 SQL 复杂性,更适合业务逻辑开发。

相关文章:

Python 课程18-SQLAlchemy

前言 SQLAlchemy 是一个功能强大的 Python SQL 工具包和对象关系映射&#xff08;ORM&#xff09;库&#xff0c;它使得开发者能够通过 Python 代码与数据库进行交互&#xff0c;而不必编写 SQL 查询。SQLAlchemy 提供了对多种数据库的支持&#xff0c;包括 MySQL、PostgreSQL…...

Module did not self-register: ‘drivelist.node‘报错解决

报错如下&#xff1a; node_modules/bindings/bindings.js:121throw e;^Error: Module did not self-register: xxxx/node_modules/drivelist/build/Release/drivelist.node.at process.func [as dlopen] (electron/js2c/asar.js:140:31)at Object.Module._extensions..node (…...

zabbix基本概念与组件

文章目录 一、zabbix简介二、​​​​​​​zabbix构成三、​​​​​​​zabbix监控对象四、​​​​​​​zabbix常用术语五、 Zabbix 6.0 新特性1.Zabbix server高可用防止硬件故障或计划维护期的停机2.Kubernetes系统从多个维度采集指标 六、zabbix 工作原理1、主动模式2、…...

Linux常用网络工具及示例

Linux系统中有许多用于网络管理、监控和故障排除的工具。以下是一些常用的网络工具及其基本用法示例&#xff1a; 1. ping - 测试主机之间的网络连接。 ping www.google.com 2. netstat - 显示网络连接、路由表、接口统计等信息。 netstat -an # 显示所有网络连接和监听…...

Go容器化微服务系统实战

1-1 本课的go微服务有什么不同&#xff1f; 聚焦于容器化可观测的购物微服务系统实战&#xff0c;通过介绍Go语言的应用趋势、容器化优势及微服务适用性&#xff0c;旨在解决学习微服务过程中遇到的难点。课程内容涵盖微服务整体架构、技术工具框架及容器平台等关键技术&#…...

研究生三年概括

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、研一1.上学期2. 下学期 二、研二1.研二上2.研二下 三、研三1.研三上2.研三下 前言 不知道是谁说的了&#xff0c;人生的路很长&#xff0c;关键的就那么几…...

MongoDB在Linux系统中的安装与配置指南

在这篇文章中&#xff0c;我们将介绍如何在CentOS 7服务器上安装MongoDB&#xff0c;并通过DataX将数据从MongoDB迁移到MySQL数据库。这将包括MongoDB的安装、配置、数据准备以及使用DataX进行数据迁移的详细步骤。 MongoDB简介 MongoDB是一个高性能、开源、无模式的文档型数据…...

Linux下如何实现不用加路径调用启动脚本

配置Systemctl启动 Linux下便于启停服务&#xff0c;可以配置systemcl,配置如下描述 说明 只有root用户可配置,文件路径为 /etc/systemd/system/XXX.service&#xff0c;本文将用nginx.service举例说明 1、创建文件 首先创建一个nginx.service文件&#xff0c;用于配置ngi…...

编程练习2 数据单元的变量替换

示例1: 1,2<A>00 示例2: 1,2<A>00,3<A>00 示例3: <B>12,1,2<B>1 示例4: <B<12,1 输出依次如下&#xff1a; #include<iostream> #include<vector> #include<string>using namespace std;/* 字符分割函数 将传入…...

mysql的查询操作

MySQL的查询操作是数据库管理和数据检索的核心。通过SQL&#xff08;Structured Query Language&#xff0c;结构化查询语言&#xff09;语句&#xff0c;用户可以执行包括数据检索、数据插入、更新和删除在内的多种操作。在本文中&#xff0c;我们将重点讨论数据检索&#xff…...

0基础学前端 day2

大家好&#xff0c;欢迎来到无限大的频道。 今天继续带领大家开始0基础学前端。 一、CSS简介与基础 层叠样式表&#xff08;CSS&#xff0c;Cascading Style Sheets&#xff09;是用来进行网页样式和布局设计的语言。通过CSS&#xff0c;开发者可以控制网页中元素的颜色、字体…...

Invalid Executable The executable contains bitcode

Invalid Executable The executable contains bitcode xcode世界xcode16后&#xff0c;打包上传testflight时三方库报错&#xff1a;Invalid Executable - The executable ***.app/Frameworks/xxx.framework/xxx contains bitcode. 解决方案&#xff1a; 执行一下指令删除该f…...

音视频入门基础:FLV专题(4)——使用flvAnalyser工具分析FLV文件

一、引言 有很多工具可以分析FLV格式&#xff0c;这里推荐flvAnalyser。其支持&#xff1a; 1.FLV 文件分析&#xff08;Tag 列表、时间戳、码率、音视频同步等&#xff09;&#xff0c;HEVC(12)/AV1(13) or Enhanced RTMP v1 with fourCC(hvc1/av01)&#xff1b; 2.RTMP/HTT…...

Java服务端开发中的网络安全:防护DDoS与数据泄露的策略

Java服务端开发中的网络安全&#xff1a;防护DDoS与数据泄露的策略 大家好&#xff0c;我是微赚淘客返利系统3.0的小编&#xff0c;是个冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;在Java服务端开发中&#xff0c;网络安全是我们必须重点关注的领域&#xff0c…...

CodeMeter 8.20AxProtector 11.50版本更新

CodeMeter是一款强大的软件保护和许可管理工具&#xff0c;此次8.20版本更新引入了多个重要的新功能和优化&#xff0c;进一步提升了不同平台上的兼容性与使用体验。本次更新扩展了对CmCloudContainer的支持&#xff0c;优化了Python、Rust等语言的加密能力&#xff0c;并修复了…...

C语言在嵌入式系统中的应用有哪些?

C语言在嵌入式系统中的应用非常广泛&#xff0c;这主要得益于其高效的运行速度、优秀的代码优化能力以及丰富的函数库。以下是C语言在嵌入式系统应用中的几个关键方面&#xff1a; 1. 硬件直接访问能力 底层硬件操作&#xff1a;C语言提供了直接访问底层硬件的机制&#xff0…...

Android 系统WIFI AP模式

在 Android 系统中&#xff0c;AP 模式&#xff08;Access Point Mode&#xff0c;热点模式&#xff09;允许设备作为 Wi-Fi 热点&#xff0c;其他设备可以通过连接这个热点进行互联网访问或局域网通信。要让 Android 设备工作在 AP 模式&#xff0c;你可以通过应用层的 API 控…...

java jdk8内存序列化为xml

在Java JDK 8中&#xff0c;将对象内存序列化为XML格式&#xff0c;可以使用JAXB&#xff08;Java Architecture for XML Binding&#xff09;&#xff0c;它是JDK 8的一部分&#xff0c;并且被广泛用于Java对象与XML之间的转换。以下是一个使用JAXB在JDK 8中将Java对象序列化为…...

脚本注入网页:XSS

跨站脚本攻击&#xff08;Cross-Site Scripting&#xff0c;简称 XSS&#xff09;是一种常见的网络安全漏洞。它是指攻击者在网页中注入恶意脚本代码&#xff0c;当用户访问该网页时&#xff0c;恶意脚本会在用户的浏览器中执行&#xff0c;从而导致一系列安全问题。这些问题可…...

Python将ONNX转为Json脚本

Python脚本 import onnx from onnx.shape_inference import infer_shapes import numpy as npfrom google.protobuf.json_format import MessageToJson, Parse import argparse import osdef convertToJson(onnx_model_path):onnx_model = onnx.load(onnx_model_path)message …...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...