HBase 的基本架构 详解
HBase 是一个分布式的、面向列的数据库,构建在 HDFS(Hadoop Distributed File System)之上,提供高效的随机读写操作。为了全面理解 HBase 的基础架构,需要从逻辑架构、物理存储、组件之间的交互、数据管理和底层设计出发,结合源码进行深入剖析。
1. HBase 的基本架构概览
HBase 的整体架构可以分为以下几个关键部分:
- HMaster:负责管理 HBase 集群中的元数据、表的创建、分区的拆分和合并、Region 的分配和迁移等任务。
- RegionServer:负责管理存储在其中的区域(Region),处理数据的读写请求。
- Zookeeper:HBase 用 Zookeeper 进行分布式协调,帮助管理元数据、故障恢复和分布式锁。
- HDFS:HBase 的底层存储依赖于 HDFS,数据最终保存在 HDFS 的文件系统中。
- 客户端:用户通过 HBase 客户端进行数据的读写,客户端与 Zookeeper 和 RegionServer 交互,定位数据并执行操作。
HBase 通过这些组件的协同工作,提供了可伸缩的分布式存储系统。接下来,我们从每个组件的角度深入分析其架构设计和源码实现。
2. HBase 的逻辑架构
HBase 采用面向列的存储模型,表的基本单元是“列族(Column Family)”。在 HBase 中,每个表由若干行组成,每一行有一个唯一的 RowKey 作为标识,每行又包含多个列。与传统关系型数据库不同,HBase 的列族是动态的,用户可以为不同的行存储不同的列。
HBase 的逻辑架构包括以下几个重要概念:
- 表(Table):行和列的集合,行由
RowKey唯一标识。 - 列族(Column Family):列被组织为族,每个列族中的数据被存储在一起。
- Region:HBase 将表中的行分割为多个区域(Region),每个区域负责存储某个
RowKey范围内的行。 - Store:每个列族对应一个
Store,用于管理该列族的数据。 - MemStore 和 HFile:每个
Store由内存中的MemStore和磁盘上的HFile组成。数据先写入MemStore,然后定期将MemStore中的数据刷到磁盘形成HFile。
HBase 的表分片(Sharding)
HBase 通过 Region 来对表进行分片,每个 Region 负责一部分 RowKey 范围的行。当表中的数据增长到一定程度时,Region 会被拆分为两个新的 Region。每个 Region 被分配到一个 RegionServer 上进行管理。
3. HBase 的物理架构
HBase 的物理架构依赖于 HDFS。HBase 中的数据被分布式存储在 HDFS 上,但由 RegionServer 进行管理。RegionServer 是 HBase 的核心组件,负责处理数据的读写操作,管理 Region 和维护数据的一致性。
HBase 的物理架构主要包括以下部分:
- HMaster:集群管理节点,负责全局管理,如
Region分配、分裂、合并和RegionServer监控等。 - RegionServer:负责管理
Region,处理客户端的读写请求,将数据写入HFile和WAL中。 - HDFS:底层存储,所有的数据最终都以
HFile的形式存储在 HDFS 中。 - Zookeeper:负责分布式协调,如监控
RegionServer的状态、分布式锁等。
HMaster 的角色和职责
HMaster 是 HBase 集群的主节点,负责管理 RegionServer 和 Region 的元数据、表的分裂与合并、Region 的分配、RegionServer 的负载均衡等任务。
在 HBase 源代码中,HMaster 的核心逻辑实现主要位于 HMaster.java 文件中。
public class HMaster extends HasThread implements MasterServices, Server {// HMaster的启动逻辑@Overridepublic void run() {// 启动 HMasterinitialize();// 处理 RegionServer 和表管理的元数据...}
}
HMaster 的职责包括:
- 管理元数据表:HMaster 负责管理
hbase:meta表,该表保存了所有Region的元数据信息,如Region的RowKey范围、RegionServer地址等。 - 监控 RegionServer:通过 Zookeeper 监控
RegionServer的状态,当RegionServer失效时,HMaster 会将其上托管的Region重新分配到其他可用的RegionServer上。 - Region 分裂和合并:HMaster 负责决定何时分裂或合并
Region,以保持集群的负载均衡。
RegionServer 的角色和职责
RegionServer 是 HBase 集群中的工作节点,负责处理客户端的请求,管理表数据并提供对 HDFS 的读写操作。
- MemStore 和 StoreFile:每个
Region的列族数据存储在MemStore中,定期会将MemStore的内容刷到 HDFS 上,形成StoreFile(即HFile)。 - WAL(Write-Ahead Log):
RegionServer使用WAL来保证数据的持久性。在每次写操作前,先将数据写入 WAL 中,以便在服务器故障时可以进行恢复。
在 HBase 源码中,RegionServer 的逻辑主要位于 HRegionServer.java 文件中:
public class HRegionServer extends HasThread implements RegionServerServices, RpcServerInterface {@Overridepublic void run() {// RegionServer的启动逻辑initialize();// 处理读写请求while (running) {// 处理客户端的写请求,写入MemStore和WALhandleWriteRequests();// 处理客户端的读请求,从MemStore或StoreFile中读取数据handleReadRequests();}}
}
RegionServer 的职责包括:
- 管理 Region:每个
RegionServer管理多个Region,并为客户端提供数据的读写服务。 - 处理客户端请求:RegionServer 通过 RPC 接口处理客户端的读写请求。写入操作会先写入
WAL,然后更新MemStore,读操作则从MemStore或StoreFile中读取数据。 - Compaction(合并):定期将
MemStore刷盘形成的多个StoreFile进行合并,减少文件碎片,提高读写效率。
Zookeeper 的角色和职责
Zookeeper 作为分布式协调服务,在 HBase 集群中起到以下作用:
- 维护元数据:Zookeeper 保存
HMaster和RegionServer的运行状态,并帮助HMaster进行元数据管理。 - 故障恢复:当
RegionServer宕机时,Zookeeper 通过监控机制发现这一变化,通知HMaster进行故障处理。 - 分布式锁:HBase 使用 Zookeeper 实现分布式锁机制,避免集群中多个节点同时执行冲突的操作。
HBase 使用 Zookeeper 来实现集群协调,确保多个 HMaster 和 RegionServer 可以安全、高效地工作。
4. HBase 的数据写入过程
理解 HBase 的写入路径是了解其底层架构的重要部分。HBase 的写入过程是由多个步骤组成的,涵盖了 WAL、MemStore 和 StoreFile 的写入。
- 写入 WAL(Write-Ahead Log):当客户端发送写请求时,RegionServer 首先将数据记录到 WAL 中,以保证数据不会因服务器宕机而丢失。WAL 是一种顺序写入的日志文件,用于故障恢复。
- 写入 MemStore:接着,数据被写入
MemStore,MemStore是位于内存中的数据结构,用于缓存数据。每个列族都有自己的MemStore。 - Flush 到 HFile:当
MemStore中的数据达到一定大小时,RegionServer 会将MemStore中的数据刷盘,生成一个HFile文件,并存储到 HDFS 中。 - 数据合并(Compaction):由于多次刷盘会生成多个 HFile 文件,HBase 会定期将小的 HFile 文件进行合并,减少文件碎片,提高读取性能。
5. HBase 的数据读取过程
HBase 的读操作首先通过 Zookeeper 定位数据所在的 RegionServer,接着 RegionServer 处理读请求:
- 查找 MemStore:首先在
MemStore中查找数据。 - 查找 BlockCache:若
MemStore中没有找到数据,RegionServer 会检查缓存中的BlockCache。 - 查找 HFile:如果缓存中也没有,RegionServer 会读取 HDFS 上的
HFile,并将结果返回客户端。
6. HBase 的一致性与容错机制
HBase 通过 WAL、MemStore 和 HDFS 的协调,实现了数据的强一致性。WAL 提供了持久化保障,MemStore 提供快速写入,HFile 提供了数据的持久存储。而 HBase 依赖于 HDFS 和 Zookeeper 来实现故障恢复与容错机制。
- 数据恢复:如果 RegionServer 宕机,HMaster 会通过 Zookeeper 检测并重新分配该 RegionServer 上的 Region,利用 WAL 进行数据恢复。
7. 结论
HBase 通过设计一套基于列族的存储模型,结合 HDFS 的分布式存储与 Zookeeper 的协调,构建了一个高效的、可伸缩的分布式 NoSQL 数据库。它的架构层次清晰,核心包括 HMaster、RegionServer、Zookeeper、WAL、MemStore 和 HFile。
相关文章:
HBase 的基本架构 详解
HBase 是一个分布式的、面向列的数据库,构建在 HDFS(Hadoop Distributed File System)之上,提供高效的随机读写操作。为了全面理解 HBase 的基础架构,需要从逻辑架构、物理存储、组件之间的交互、数据管理和底层设计出…...
crypt.h:No such file or directory报错处理
crypt.h:No such file or directory 报错处理 前言:本文初编辑于2024年9月27日 CSDN主页:https://blog.csdn.net/rvdgdsva 博客园主页:https://www.cnblogs.com/hassle 博客园本文链接: 大!萌࿰…...
网络消费维权的9个常见法律问题
一、忘记付尾款,定金能否退还? 不能。消费者在网络提交订单后,合同即成立。合同成立后,消费者的义务为按时付款。若消费者在支付定金后未能支付尾款,即未能履行付款义务,会导致合同无法履行,构…...
detectron2是怎么建立模型的?以SparseInst代码为例
看SparseInst论文发现论文里有些地方没讲清楚;遂找SparseInst源码来看模型结构 我选择从推理代码来找模型结构: 经探索,在SparseInst代码里,推理需要执行代码 python demo.py --config-file configs/sparse_inst_r50_base.yaml …...
kafka监控平台Kafdrop:使用记录
背景 AI的发展真是太方便了,让它给我推荐一款轻量级,没有学习曲线的kafka监控平台,它就给我推荐这一款。用了一下果然没有一点学习曲线。 目前已经满足了我的需求,可视化界面,topic、消息、消费者group信息以及消费情…...
的使用和内联函数
今天我们来了解一下C中的&和内联函数 引用标识符& C觉得C语言部分的指针有些麻烦,容易混乱,所以C创造了一个标识符&,表示是谁的别名。跟指针对比一下:int* a1&b1;int &a2b2;这样看,显然a1存放的…...
征程6 上基于 DEB 工具实现包管理
1.引言 在开发、调测过程中,开发人员需要将系统软件、应用软件部署到 Soc 板端,以用于运行调试。传统的部署方式是通过解压复制或者调用部署脚本。这样的部署方式需要有着方式不统一、维护投入大的缺点。 在 linux 系统上,大多采用包管理的…...
【git】一文详解: git rebase到底有啥问题
引子 我反复看到这样的评论:“git rebase 像屎一样”。人们似乎对此有很强烈的感受,我真的很惊讶,因为我没有遇到太多使用 rebase 的问题,而且我一直在使用它。 使用 rebase 的成本有多大?在实际使用中它给你带来了什…...
高性能计算应用优化实践之WRF
WRF(Weather Research Forecast)模式是由美国国家大气研究中心(NCAR)、国家环境预报中心(NCEP)等机构自1997年起联合开发的新一代高分辨率中尺度天气研究预报模式,重点解决分辨率为1~…...
nsight-compute使用教程
一 安装 有的时候在linux上安装上了nsight-compute,可以生成报告,但是却因为缺少qt组件而无法打开,我选择的方法是在linux上生成报告,在window上的nsight compute的图形界面打开,需要注意的是,nsight compute图形界面的版本一定要更高,不然无法打开 二 使用 2.1 生成…...
【深度学习】03-神经网络01-4 神经网络的pytorch搭建和参数计算
# 计算模型参数,查看模型结构,我们要查看有多少参数,需要先安装包 pip install torchsummary import torch import torch.nn as nn from torchsummary import summary # 导入 summary 函数,用于计算模型参数和查看模型结构# 创建神经网络模型类 class Mo…...
我与Linux的爱恋:命令行参数|环境变量
🔥个人主页:guoguoqiang. 🔥专栏:Linux的学习 文章目录 一.命令行参数二.环境变量1.环境变量的基本概念2.查看环境变量的方法3.环境变量相关命令4.环境变量的组织方式以及获取环境变量的三种方法 环境变量具有全局属性 一…...
django drf 统一Response格式
场景 需要将响应体按照格式规范返回给前端。 例如: 响应体中包含以下字段: {"result": true,"data": {},"code": 200,"message": "ok","request_id": "20cadfe4-51cd-42f6-af81-0…...
SM2协同签名算法中随机数K的随机性对算法安全的影响
前面介绍过若持有私钥d的用户两次SM2签名过程中随机数k相同,在对手获得两次签名结果Sig1和Sig2的情况下,可破解私钥d。 具体见SM2签名算法中随机数K的随机性对算法安全的影响_sm2关闭随机数-CSDN博客 另关于SM2协同签名过程,具体见SM2协同签…...
解决setMouseTracking(true)后还是无法触发mouseMoveEvent的问题
如图,在给整体界面设置鼠标追踪且给ui界面的子控件也设置了鼠标追踪后,运行后的界面仍然有些地方移动鼠标无法触发 mouseMoveEvent函数,这就令人头痛。。。 我的解决方法是:重载event函数: 完美解决。。。...
基于深度学习的花卉智能分类识别系统
温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 传统的花卉分类方法通常依赖于专家的知识和经验,这种方法不仅耗时耗力,而且容易受到主观因素的影响。本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络&#…...
Springboot集成MongoDb快速入门
1. 什么是MongoDB 1.1. 基本概念 MongoDB是一个基于分布式文件存储 [1] 的数据库。由C语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数…...
DERT目标检测—End-to-End Object Detection with Transformers
DERT:使用Transformer的端到端目标检测 论文题目:End-to-End Object Detection with Transformers 官方代码:https://github.com/facebookresearch/detr 论文题目中包括的一个创新点End to End(端到端的方法)简单的理解就是没有使…...
软件后端开发速度慢的科技公司老板有没有思考如何破局
最近接到两个科技公司咨询,说是他们公司后端开发速度太慢,前端程序员老等着,后端程序员拖了项目进度。 这种问题不只他们公司,在软件外包公司中,有一部分项目甲方客户要得急,以至于要求软件开发要快&#…...
开放原子超级链内核XuperCore可搭建区块链
区块链是一种分布式数据库技术,它以块的形式存储数据,并使用密码学方法保证数据的安全性和完整性。 每个块包含一定数量的交易信息,并通过加密链接到前一个块,形成一个不断增长的链条。 这种设计使得数据在网络中无法被篡改,因为任何尝试修改一个块的数据都会破坏整个链的…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
恶补电源:1.电桥
一、元器件的选择 搜索并选择电桥,再multisim中选择FWB,就有各种型号的电桥: 电桥是用来干嘛的呢? 它是一个由四个二极管搭成的“桥梁”形状的电路,用来把交流电(AC)变成直流电(DC)。…...
