基于ollama的本地RAG实践
先放参考的原文链接大语言模型实战——搭建纯本地迷你版RAG_本地rag-CSDN博客
一、大模型选择
在我之前的文章中有讲到,我用的是ollama中的llama3.1
Ollama在Windows安装,使用,简单调用API_ollama如何对外提供api-CSDN博客
二、嵌入模型
与原文的嵌入模型不同,我选取的是这个,笔者也可以尽可能地多尝试,给出下载链接
git clone https://www.modelscope.cn/maidalun/bce-embedding-base_v1.git
三、业务模块
业务模块完全根据参考文章,我只是记录我实现的过程。
1、整体结构

解释:
data文件夹我是随便放的一个文档
LRAG文件夹放的是主要py文件
maidalun1020文件夹是拉取的嵌入模型
下面我将逐一给出各个代码
2、文档读取模块
import os
from docx import Documentclass ReadFiles:def __init__(self, path: str):self.path = pathdef list_files(self):file_list = []for filepath, _, filenames in os.walk(self.path):for filename in filenames:file_list.append(os.path.join(filepath, filename))return file_listdef read_file_content(self, file_path: str):# 根据文件扩展名选择读取方法if file_path.endswith('.txt') or file_path.endswith('.stt'):return self.read_text(file_path)elif file_path.endswith('.docx'):return self.read_docx(file_path)else:print(f"Unsupported file type: {file_path}")return Nonedef read_text(self, file_path: str):with open(file_path, 'r', encoding='utf-8') as file:return file.read()def read_docx(self, file_path: str):doc = Document(file_path)contents = [para.text for para in doc.paragraphs]return "\n\n".join(contents)def split_chunks(self, text: str):return text.split("\n\n")def load_content(self):docs = []file_list = self.list_files()for file_path in file_list:# 读取文件内容content = self.read_file_content(file_path)if content is None:continuedocs.extend(self.split_chunks(content))return docs# 使用示例
if __name__ == "__main__":path_to_files = 'ollama-python-main/zdf/data/深度学习.txt'reader = ReadFiles(path_to_files)content = reader.load_content()for doc in content:print(doc)
3、嵌入模块
from typing import Listimport numpy as npclass LocalEmbedding:def __init__(self, path: str) -> None:self.path = pathself._model = self.load_model()def load_model(self):import torchfrom sentence_transformers import SentenceTransformerif torch.cuda.is_available():device = torch.device("cuda")else:device = torch.device("cpu")model = SentenceTransformer(self.path, device=device, trust_remote_code=True)return modeldef get_embedding(self, text: str) -> List[float]:return self._model.encode([text])[0].tolist()def cosine_similarity(cls, vector1: List[float], vector2: List[float]) -> float:"""calculate cosine similarity between two vectors"""dot_product = np.dot(vector1, vector2)magnitude = np.linalg.norm(vector1) * np.linalg.norm(vector2)if not magnitude:return 0return dot_product / magnitude
4、向量库模块
from typing import List
from Embedding import LocalEmbedding
import numpy as np
from tqdm import tqdmclass VectorStore:def __init__(self, embedding_model: LocalEmbedding) -> None:self._embedding_model = embedding_modeldef embedding(self, documents: List[str] = ['']) -> List[List[float]]:self._documents = documentsself._vectors = []for doc in tqdm(self._documents, desc="Calculating embeddings"):self._vectors.append(self._embedding_model.get_embedding(doc))return self._vectorsdef query(self, query: str, k: int = 1) -> List[str]:query_vector = self._embedding_model.get_embedding(query)result = np.array([self._embedding_model.cosine_similarity(query_vector, vector)for vector in self._vectors])return np.array(self._documents)[result.argsort()[-k:][::-1]].tolist()
5、大模型导入模块
from typing import List, DictRAG_PROMPT_TEMPLATE = """先对上下文进行内容总结,再使用上下文来回答用户的问题。如果你不知道答案,就说你不知道。总是使用中文回答。
问题: {question}
可参考的上下文:
···
{context}
···
如果给定的上下文无法让你做出回答,请回答数据库中没有这个内容,你不知道。
有用的回答:
"""class OllamaChat:def __init__(self, model: str = "llama3.1") -> None:self.model = modeldef _build_messages(self, prompt: str, content: str):prompt_message = RAG_PROMPT_TEMPLATE.format(question=prompt, context=content)messages = [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt_message}]return messagesdef chat(self, prompt: str, history: List[Dict], content: str) -> str:import ollama# 给语言模型发送请求response = ollama.chat(model=self.model,messages=self._build_messages(prompt, content),stream=True)# 解析并组装响应结果final_response = ''for chunk in response:if isinstance(chunk, str):final_response += chunkelif 'content' in chunk.get('message', {}):final_response += chunk['message']['content']return final_response
6、主程序调用模块
from utils import ReadFiles
from Embedding import LocalEmbedding
from VertorStore import VectorStore
from LLM import OllamaChat# 获得data目录下的所有文件内容并分割
docs = ReadFiles('ollama-python-main/zdf/data').load_content()
print(f"docs count:{len(docs)} \n first doc: {docs[0]}")embedding = LocalEmbedding(path='ollama-python-main/zdf/maidalun1020/bce-embedding-base_v1')
print(f"model: {embedding}")vector = VectorStore(embedding_model=embedding)
embeddings = vector.embedding(docs)
print(f"embeddings count: {len(embeddings)} \n dimentions: {len(embeddings[0])} \n embedding content: {embeddings[0][:10]}")question = '深度学习的应用场景有哪些?'
content = vector.query(question, k=1)[0]
print(f"这是:\n{content}")model = OllamaChat("llama3.1")
print(f"这是大模型回答的:\n{model.chat(question, [], content)}")
7、实现结果
实现结果可谓是一沓糊涂,哈哈哈哈哈,不过没关系,刚尝试已经很开心了

可以细心看下三个图,因为是照着写的,所以输出比较多。为了区分,我特意将大模型回答的和查找到的做了换行区分,如上图。
做的很简陋。。。。。
相关文章:
基于ollama的本地RAG实践
先放参考的原文链接大语言模型实战——搭建纯本地迷你版RAG_本地rag-CSDN博客 一、大模型选择 在我之前的文章中有讲到,我用的是ollama中的llama3.1 Ollama在Windows安装,使用,简单调用API_ollama如何对外提供api-CSDN博客 二、嵌入模型 …...
安卓开发板_MTK开发板_联发科开发评估套件Demo板接口介绍
开发板是一种功能丰富的电路平台,专为开发人员设计,集成了多种传感器、扩展接口和通信模块。这使得开发者能够高效进行原型设计和功能验证,极大地简化了软硬件开发的过程。 此次介绍的安卓开发板由MT8788核心板与底板构成,特别之处…...
代码随想录冲冲冲 Day58 图论Part9
47. 参加科学大会(第六期模拟笔试) 根据昨天的dijkstra进行堆优化 使用的原因是点多但边少 所以直接对于边进行操作 1.对于priority_queue来说 这是最小堆, 小于的话就是最大堆 之后由于是根据边来说的 所以新建一个Edge并且初始化一下 之后由于使用…...
UnityHub下载任意版本的Unity包
1)先打开 // 也可以采用2直接打开 2)也可以直接打开 下载存档 (unity.com) 3)关联起来UnityHub即可...
网站服务器怎么计算同时在线人数?
网站服务器计算同时在线人数通常涉及跟踪和记录当前活跃会话的数量。以下是几种常用的方法来估算或计算网站的同时在线人数: 1. 会话跟踪 - 基于会话(Session):服务器可以为每个访问者创建一个会话,并跟踪这些会话。当访问者首次访问网站时&a…...
[spring]MyBatis介绍 及 用MyBatis注解操作简单数据库
文章目录 一. 什么是MyBatis二. MyBatis操作数据库步骤(使用注解)创建工程创建数据库创建对应实体类配置数据库连接字符串写持久层代码单元测试 三. MyBatis基础操作 使用注解打印日志参数传递增删改查 一. 什么是MyBatis 简单来说 MyBatis 是更简单完成程序和数据库交互的框架…...
Ks渲染做汽车动画吗?汽车本地渲染与云渲染成本分析
Keyshot是一款强大的实时光线追踪和全域光渲染软件,它确实可以用于制作汽车动画,包括汽车模型的渲染和动画展示。Keyshot的动画功能允许用户创建相机移动、物体变化等动态效果,非常适合用于汽车动画的制作。 至于汽车动画的渲染成本ÿ…...
AI智能时代:哪款编程工具让你的工作效率翻倍?
引言 在日益繁忙的工作环境中,选择合适的编程工具已成为提升开发者工作效率的关键。不同的工具能够帮助我们简化代码编写、自动化任务、提升调试速度,甚至让团队协作更加顺畅。那么,哪款编程工具让你的工作效率翻倍?是智能的代码编…...
这五本大模型书籍,让你从大模型零基础到精通,非常详细收藏我这一篇就够了
大模型(Large Language Models, LLMs)是近年来人工智能领域的一大热点,它们在自然语言处理、对话系统、内容生成等多个方面展现出了强大的能力。随着技术的发展,市面上出现了许多介绍大模型理论与实践的书籍,为研究人员…...
面试经典150题 堆
215.数组中的第K个最大元素 建堆算法实现-CSDN博客 215. 数组中的第K个最大元素 中等 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必…...
day-62 每种字符至少取 K 个
思路 滑动窗口:改变思路,从左右两边取字符,是a b c三个字符至少被取k次,那么意味着如果我们知道字符串中a b c的出现个数,那么可以知道取走后剩下子串a b c的个数,问题转化为了求最长子串 解题过程 如果a …...
免费好用!AI声音克隆神器,超级简单,10秒就能克隆任何声音!(附保姆级教程)
今天下午还有读者问: 有没有能克隆声音的 AI 工具? 其实剪映很早就上了克隆声音的功能。 只需要按要求朗读例句,或者上传本地的音视频文件,就可以克隆声音了。 操作非常简单,效果也不错,可以试试。 除了…...
LeetCode146 LRU缓存
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 …...
【Java】包装类【主线学习笔记】
文章目录 前言包装类基本数据类型与包装类之间的转换基本数据类型转换为包装类可以通过以下几种方式:包装类转换为基本数据类型可以通过以下几种方式:初始化值不同与String之间的转换 前言 Java是一门功能强大且广泛应用的编程语言,具有跨平台…...
华为HarmonyOS地图服务 11 - 如何在地图上增加点注释?
场景介绍 本章节将向您介绍如何在地图的指定位置添加点注释以标识位置、商家、建筑等,并可以通过信息窗口展示详细信息。 点注释支持功能: 支持设置图标、文字、碰撞规则等。支持添加点击事件。 PointAnnotation有默认风格,同时也支持自定…...
uniapp js怎么根据map需要显示的点位,计算自适应的缩放scale
推荐学习文档 golang应用级os框架,欢迎stargolang应用级os框架使用案例,欢迎star案例:基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识,这里有免费的golang学习笔…...
Mysql 架构
目录 1.1 Mysql 逻辑架构图 1.2 SQL 的执行流程 1.3 SQL 书写顺序和执行顺序 1.4 Mysql 日志文件 1.4.1. 二进制日志(Binary Log) 1.4.2. 错误日志(Error Log) 1.4.3. 慢查询日志(Slow Query Log) 1.…...
C语言 | Leetcode C语言题解之第429题N叉树的层序遍历
题目: 题解: #define MAX_LEVE_SIZE 1000 #define MAX_NODE_SIZE 10000int** levelOrder(struct Node* root, int* returnSize, int** returnColumnSizes) {int ** ans (int **)malloc(sizeof(int *) * MAX_LEVE_SIZE);*returnColumnSizes (int *)mal…...
Python中列表常用方法
# 定义列表: # 定义一个空列表 my_list []# 定义一个包含不同类型元素的列表 my_list [1, 2, 3, a, b, c, 2.5, True]# 定义一个嵌套列表(列表中包含列表) my_list [[1, 2, 3], [a, b, c], [2.5, True]]print(my_list[0]) # [1, 2, 3]# 访问元素: my…...
『功能项目』下载Mongodb【81】
下载网址:Download MongoDB Community Server | MongoDB 点击安装即可 选择Custom 此时安装已经完成 桌面会创建图标 检查是否配置好MongoDB 输入cmd命令行 Windows键 R 打开命令行 输入cmd 复制安装路径 复制data路径 如果输出一大串代码即配置mongdb成功...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
