当前位置: 首页 > news >正文

深度学习:调整学习率

目录

前言

一、什么是调整学习率?

二、调整学习率的作用

三、怎么调整学习率

1.有序调整

2.自适应调整

3.自定义调整

4.调整示例


前言

        在深度学习中,调整学习率是非常重要的,它对模型的训练效果和收敛速度有显著影响。

 

一、什么是调整学习率?

  1. 学习率是深度学习中一个关键的超参数,控制着模型在每次更新时权重的调整幅度。它决定了梯度下降算法在最小化损失函数时的步长。较大的学习率可能导致模型不收敛或震荡,而较小的学习率则可能使收敛速度过慢。因此,选择合适的学习率对于模型训练的成功至关重要。
  2. 常用的学习率有0.1、0.01以及0.001等,学习率越大则权重更新越快。一般来说,我们希望在训练初期学习率大一些,使得网络收敛迅速,在训练后期学习率小一些,使得网络更好的收敛到最优解。

 

二、调整学习率的作用

        调整学习率的目的是优化模型训练过程,提高收敛速度,并确保最终模型的性能。通过合理调整学习率,可以避免训练过程中的震荡或不收敛,帮助模型更有效地找到最优解,最终提升模型的泛化能力和准确性。

 

三、怎么调整学习率

  • Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现。

1.有序调整

  1. 等间隔调整(Step),
  2. 多间隔调整(MultiStep),
  3. 指数衰减(Exponential),
  4. 余弦退火(CosineAnnealing)

下图是不同方法的概念图:

代码展示:

"""有序调整学习率"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)"""等间隔调整"""
torch.optim.lr_scheduler.StepLR(optimizer, step_size=, gamma=0.1)
# optimizer: 神经网络训练中使用的优化器,
# step_size: 学习率下降间隔数,单位是epoch,而不是iteration.
# gamma:学习率调整倍数,默认为0.1
# 每训练step_size个epoch,学习率调整为lr=lr*gamma."""多间隔调整"""
torch.optim.lr_shceduler.MultiStepLR(optimizer, milestones=, gamma=0.1)
# milestone(list): 一个列表参数,表示多个学习率需要调整的epoch值,
# 如milestones=[10, 30, 80],即10轮时将gamma乘以学习率lr,30轮时、80轮时与10轮时操作一致"""指数衰减"""
torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=)
# gamma:学习率调整倍数的底数,指数为epoch,初始值为lr, 倍数为γepoch,每一轮都调整"""余弦退火"""
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=, eta_min=0)
# T_max:学习率下降到最小值时的epoch数,即当epoch=T_max时,学习率下降到余弦函数最小值,当epoch>T_max时,学习率将增大
# eta_min: 学习率调整的最小值,即epoch=T_max时,lr_min=eta_min, 默认为0.

 

2.自适应调整

  • 依训练状况伺机而变,通过监测某个指标的变化情况(loss、accuracy),当该指标不怎么变化时,就是调整学习率的时机(ReduceLROnPlateau)
"""根据指标调整学习率"""
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1,patience=10,verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
  • 参数解释:
  • optimizer: 需要调整学习率的优化器。
  • mode: 字符串,选择监控的指标类型。'min' 表示当被监控的指标停止下降时,学习率将减小; 'max' 表示当指标停止上升时减小学习率。
  • factor: 每次调整学习率时,学习率将乘以这个因子(通常在 0 到 1 之间)。例如,float = 0.1表示学习率减少到原来的 10%。
  • patience: 监控指标在没有改善时等待的 epochs 数。在这段时间内,如果指标没有改善,学习率将被调整。
  • verbose: 布尔值,是否在调整学习率时打印消息。
  • threshold: 改变学习率的最小阈值。如果变化小于该阈值,则认为没有改善。这个值可以是绝对值或相对值,具体取决于 threshold_mode
  • threshold_mode: 字符串, 'rel' 表示使用相对阈值(与当前值的比例), 'abs' 表示使用绝对阈值。
  • cooldown: 在学习率被减少后,允许继续训练的 epochs 数。在此期间,将不会调整学习率。
  • min_lr: 学习率的最小值,防止学习率降到过低。
  • eps: 一个很小的值,避免除以零的错误,通常在计算时用作保护。

 

3.自定义调整

  • 通过自定义关于epoch的lambda函数调整学习率(LambdaLR)。
torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
# 参数:
# lr_lambda(function or list): 自定义计算学习率调整倍数的函数,通常是epoch的函数,当有多个参数组时,设为list.

 

4.调整示例

  • 在每个epoch的训练中使用 scheduler.step() 即可进行学习率的更新
"""有序调整学习率"""
loss_fn = nn.CrossEntropyLoss()  # 处理多分类
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)  # 调整学习率epochs = 50for t in range(epochs):print(f"Epoch {t + 1}\n--------------")train(train_dataloader, model, loss_fn, optimizer)test(test_dataloader, model, loss_fn)scheduler.step()  # 在每个epoch的训练中.使用scheduler.step()语句进行学习率更新
print(best_acc)

相关文章:

深度学习:调整学习率

目录 前言 一、什么是调整学习率? 二、调整学习率的作用 三、怎么调整学习率 1.有序调整 2.自适应调整 3.自定义调整 4.调整示例 前言 在深度学习中,调整学习率是非常重要的,它对模型的训练效果和收敛速度有显著影响。 一、什么是调整…...

Java项目实战II基于Java+Spring Boot+MySQL的厨艺交流平台设计与实现(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在美食文化…...

第二十节:学习Redis缓存数据库实现增删改查(自学Spring boot 3.x的第五天)

这节记录下如何使用redis缓存数据库。 第一步: 先在服务器端安装redis, 下载地址:Releases tporadowski/redis GitHub。 第二步: 安装redis客户端可视化管理软件redisDesktopmanager Redis Desktop Manager - Download 第…...

Android SQLite的基本使用、生成Excel文件保存到本地

1. Android SQLite的基本使用 1.1. SQLiteOpenHelper Android 底层已经通过一个SQLiteOpenHelper的抽象类将数据库的创建,以及修改,更新等都放在了里面。 要使用它必须实现它的OnCreate(SQLiteDatabase db),onUpgrade(SQLiteDatabase db, int…...

记一次因视频编码无法在浏览器播放、编码视频报错问题

起因 ... f cv2.VideoWriter_fourcc(*h264) ...我这边使用h264编码会提示 OpenCV: FFMPEG: tag 0x34363268/h264 is not supported with codec id 27 and format mp4 / MP4 (MPEG-4 Part 14) OpenCV: FFMPEG: fallback to use tag 0x31637661/avc1 [ERROR:02.711] global /i…...

【深度学习】深度卷积神经网络(AlexNet)

在 LeNet 提出后,卷积神经网络在计算机视觉和机器学习领域中很有名气,但并未起到主导作用。 这是因为 LeNet 在更大、更真实的数据集上训练的性能和可行性还有待研究。 事实上,在 20 世纪 90 年代到 2012 年之间的大部分时间里,…...

C语言扫盲

文章目录 C版本C语言特征GCCprintf数据类型函数指针内存管理void指针 Struct结构和Union结构typedef预处理器make工具cmake工具Projectintegral of sinc functionemulator embedded systeman event schedule 补充在线Linux终端安装Linux参考 建议还是国外教材学习…人家的PPT比…...

视频融合共享平台LntonAIServer视频智能分析抖动检测算法和过亮过暗检测算法

LntonAIServer作为一款智能视频监控平台,集成了多种先进的视频质量诊断功能,其中包括抖动检测和过暗检测算法。这些算法对于提升视频监控系统的稳定性和图像质量具有重要意义。 以下是对抖动检测算法和过暗检测算法的应用场景及优势的详细介绍。 一、L…...

【笔记篇】Davinci Configurator OS模块(上)

目录 1 简介1.1 架构概览2 功能描述2.1 特性2.2 规范偏离2.2.1 API 函数的泛型偏离2.2.2 可信函数 API 偏离2.2.3 服务保护偏离2.2.4 代码保护2.2.5 SyncScheduleTable API 偏差2.2.6 CheckTask/ISRMemoryAccess API 偏差2.2.7 中断 API 偏差2.2.8 Cross Core Getter API2.2.9 …...

19.3 打镜像部署到k8s中,prometheus配置采集并在grafana看图

本节重点介绍 : 打镜像,导出镜像,传输到各个节点并导入运行该项目配置prometheus和grafana 打镜像 本地build docker build -t ink8s-pod-metrics:v1 .build过程 导出镜像 docker save ink8s-pod-metrics > ink8s-pod-metrics.tar 传输到各个node…...

如何让系统u盘重新可用

目录 引言开始操作遇到的错误 引言 我们将 u 盘制作为系统 U 盘后,U 盘就没法在电脑中正常识别出了。当装完系统,不再需要 u 盘充当系统 U 盘想要正常使用该 U 盘,这时候就需要有些操作,让这个 U 盘正常化。 上图就是充当系统盘的…...

14.安卓逆向-frida基础-编写hook脚本2

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于:图灵Python学院 本人写的内容纯属胡编乱造,全都是合成造假,仅仅只是为了娱乐,请不要盲目相信。 工…...

车辆零部件检测和分割数据集-车体数据集-yolo格式-yolov5-yolov10可用

这些标签是用于实例分割任务中的类别,通常在汽车图像识别或自动驾驶技术中使用。以下是这些类别: back_bumper - 后保险杠back_glass - 后挡风玻璃back_left_door - 后左车门back_left_light - 后左灯back_right_door - 后右车门back_right_light - 后右…...

甄选范文“论分布式存储系统架构设计”,软考高级论文,系统架构设计师论文

论文真题 分布式存储系统(Distributed Storage System)通常将数据分散存储在多台独立的设备上。传统的网络存储系统采用集中的存储服务器存放所有数据,存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,不能满足大规模存储应用的需要。分布式存储系统采用可扩展的…...

第十四章:html和css做一个心在跳动,为你而动的表白动画

💖 让心跳加速,传递爱意 💖 在这个特别的时刻,让爱在跳动中绽放!🌟 无论是初次相遇的心动,还是陪伴多年的默契,我们的心总在为彼此跳动。就像这颗炙热的爱心,随着每一次的跳动,传递着满满的温暖与期待。 在这个浪漫的季节,让我们一同感受爱的律动!无论你是在…...

poetry安装

文章目录 前言1. 为什么pip install poetry 会造成依赖冲突1.1 全局环境依赖混淆:1.2 工具和项目之间的冲突:1.3 缺乏依赖隔离:1.4 多出很多额外依赖: 2. 不推荐pipx安装3. poetry高级安装3.1 默认安装路径3.2自定义安装 4. 安装p…...

Proteus如何添加数码管

1、打开安装好的Proteus,点击上方菜单栏中的“库”,再选择“从库选取零件”,或者在左侧元件列表中单击鼠标右键,再点击右键菜单中的“从库中挑选”选项。 2、之后在元器件库中,点击类别中的“Optoelectronics”&#…...

5 apache poi实现excel的动态下拉框功能

excel下拉框 RequestMapping("xiala")public void xiala(HttpServletResponse response){String fileName "僵尸表";try{response.setContentType("application/vnd.openxmlformats-officedocument.spreadsheetml.sheet");response.setCharact…...

深度对比:etcd、Consul、Zookeeper 和 Nacos 作为注册中心和配置中心的优势与劣势

在现代分布式系统和微服务架构中,服务注册中心 和 配置中心 是系统稳定运行的关键组成部分。服务注册中心负责服务的动态注册与发现,而配置中心用于集中管理配置,确保系统在变化的环境中保持一致性。本文将对比 etcd、Consul、Zookeeper 和 N…...

Android webview拦截H5的接口请求并返回处理好的数据

Android webview拦截H5的接口请求并返回处理好的数据 Android 可以通过 WebView 的 shouldInterceptRequest 方法拦截到 H5 中的网络请求。这是一个 WebViewClient 中的回调方法,允许开发者在 WebView 发起网络请求时对其进行处理和修改。 具体使用方法如下&#…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

数据库分批入库

今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...

深度学习水论文:mamba+图像增强

🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...