leetcode刷题day33|动态规划Part02(62.不同路径、63. 不同路径 II、 343.整数拆分、96.不同的二叉搜索树)
62.不同路径
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
2、确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。
3、dp数组的初始化
首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
4、确定遍历顺序
dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
5、举例推导dp数组
代码如下:
class Solution {public int uniquePaths(int m, int n) {int[][] dp=new int[m][n];for(int i=0;i<m;i++) dp[i][0]=1;for(int i=0;i<n;i++) dp[0][i]=1;for(int i=1;i<m;i++){for(int j=1;j<n;j++){dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];}
}
63. 不同路径 II
思路:这个题目和上一题的区别在于增加了一个障碍物,障碍物位置的可能路径为0。同时注意初始化的时候如果初始化的两边有一个障碍物,那么障碍物后面的格子路径数都为0。
代码如下:
class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m=obstacleGrid.length;int n=obstacleGrid[0].length;int[][] dp=new int[m][n];for(int i=0;i<m && obstacleGrid[i][0]==0;i++) dp[i][0]=1;for(int j=0;j<n && obstacleGrid[0][j]==0;j++) dp[0][j]=1;for(int i=1;i<m;i++){for(int j=1;j<n;j++){dp[i][j]=obstacleGrid[i][j]==0?dp[i-1][j]+dp[i][j-1]:0;}}return dp[m-1][n-1];}
}
343.整数拆分
思路:求一个数i拆分后乘积的最大值,考虑从让j从1开始遍历计算j*(i-j)和j*dp[i-j],也就是说看分成两部分和分成多个部分哪个更大,保留更大的那个。
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。
2、确定递推公式
递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
在取最大值的时候,还需要比较dp[i]是因为对于每一个j都会得到一个dp[i],最后需要保留最大值。
3、dp的初始化
dp[0] dp[1] ,无法拆分,不进行初始化,从dp[2] = 1开始。
4、确定遍历顺序
递归公式dp[i] 依靠 dp[i - j],所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
5、举例推导dp数组
注意:遍历j的时候遍历到i/2即可,因为前面是拆分更大的的数,当j>i/2时开始拆分小数,拆分大的数得到的乘积会更大。
代码如下:
class Solution {public int integerBreak(int n) {int[] dp=new int[n+1];dp[2]=1;for(int i=3;i<=n;i++){for(int j=1;j<=i/2;j++){dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));}}return dp[n];}
}
96.不同的二叉搜索树
思路:dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。
2、确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] (j相当于是头结点的元素,从1遍历到i为止。)
所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量。
3、dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树。初始化dp[0] = 1
4、确定遍历顺序
从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。
5、举例推导dp数组
代码如下:
class Solution {public int numTrees(int n) {int[] dp=new int[n+1];dp[0]=1;for(int i=1;i<=n;i++){for(int j=1;j<=i;j++){dp[i]+=dp[j-1]*dp[i-j];}}return dp[n];}
}
注:代码虽然看起来很简单,但思路并不容易想到,应熟悉掌握思路的形成方式以及动规五部曲的使用。
相关文章:
leetcode刷题day33|动态规划Part02(62.不同路径、63. 不同路径 II、 343.整数拆分、96.不同的二叉搜索树)
62.不同路径 机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。 动规五部曲 1、确定dp数组(dp table)以及下标的含义 dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路…...

基于Python大数据的B站热门视频的数据分析及可视化系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…...
matlab-批处理图像质量变化并形成折线图 (PSNR)
%修改路径就能用,图片分辨率要一致 %clc;clear all;close all;tic;%清理内存 file_pathE:\test\resources\image\;% 批量图像所在的文件夹下 file_save_pathE:\test\resources\SaveImage\;% 要存储的地址 img_path_listdir(strcat(file_path,*.jpg));% 获取批量bm…...
[Doc][Ros2]ros2中Qos(Quality of Service,服务质量)介绍
在 ROS 2 中,QoS(Quality of Service,服务质量)是用于控制节点之间消息传递的可靠性、历史存储和数据持久性等方面的机制。通过 QoS 设置,用户可以更细粒度地控制消息传递的行为,确保在不同网络环境或应用场景中满足特定的通信需求。 几个常用的包: QoSProfile: 含义…...

SpringBoot日志集成-LogBack
Log4J:最早的Java日志框架之一,由Apache基金会发起,提供灵活而强大的日志记录机制JDK自带的日志框架:java.util.logging.Logg,是JDK1.4之后提供的日志API,已淘汰logback: logback一个开源的日志…...

Google BigTable架构详解
文章目录 什么是BigTable?架构图一、整体架构二、数据存储与索引存储模型 三、数据拆分与存储四、元数据管理五、读写流程 其他内容概览负载平衡其他存储和数据库选项 什么是BigTable? Bigtable是Google开发的一个高性能、可扩展的分布式存储系统,用于管理大规模…...

【python】如何切换ipynb的kernel至指定conda环境
需求介绍 打开(若无新建环境) 环境 conda env list conda activate cvml conda install ipykernel python -m ipykernel install --name cvml 以上完成后,打开jupyter 创建一个python文件 在kernel——>change kernel——>python[conda env:cvml] 参考资料…...
Linux【基础指令汇总】
目录 Linux命令的特点 1、文件管理 ls命令 cp命令 mkdir命令 mv命令 pwd命令 2、文档编辑 cat命令 echo命令 rm命令 tail命令 rmdir命令 3、系统管理 rpm命令 find命令 startx命令 uname命令 vmstat命令 4、磁盘管理 df命令 fdisk命令 lsblk命令 hdpar…...
SpringCloud-EurekaClient
创建Module pom.xml <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-client</artifactId></dependency> spring:application:name: provider # 应用程序的名称,…...
配置Scrapy项目
配置Scrapy项目是一个涉及多个步骤的过程,在上一篇博客中已经写了安装Scrapy、创建Scrapy项目的步骤。 接下来应该定义Item类、编写爬虫程序以及配置settings.py文件等。以下是一个详细的配置Scrapy项目的步骤: 一、定义Item类 在项目目录下…...

航顺芯片HK32MCU受邀出席汽车芯片国产化与技术创新闭门研讨会
[中国,北京,2024年9月21日]近日,深圳市航顺芯片技术研发有限公司(以下简称“航顺芯片”)产品总监郑增忠受邀出席由中国设备管理协会新能源汽车产业发展促进中心主办的“汽车芯片国产化与技术创新闭门研讨会”。 会上航…...
【深度学习】(6)--图像数据增强
文章目录 图像数据增强一、作用二、增强方法三、代码体现四、增强体现 总结 图像数据增强 数据增强(Data Augmentation),也称为数据增广,是一种在机器学习和深度学习中常用的技术,它通过对现有数据进行各种变换和处理…...
Vscode 远程切换Python虚拟环境
在VSCode中远程切换Python虚拟环境是一个涉及多个步骤的过程,包括安装必要的扩展、连接到远程服务器、创建或激活虚拟环境,并在VSCode中选择相应的Python解释器。以下是一个详细的步骤指南,包括代码示例,旨在帮助我们完成这一过程…...
Sqoop面试整理
Sqoop(SQL-to-Hadoop)是一个用于在Hadoop和关系型数据库之间传输数据的工具。以下是一些可能在Sqoop面试中会被问到的问题及其答案: 1. 什么是Sqoop?为什么使用它? 回答: Sqoop是一个用来在Hadoop和关系型数据库(如MySQL、Oracle、PostgreSQL等)之间高效传输大数据的工具…...

PyCharm 的安装和配置
环境要求: OS:Windows / macOS / Linux (此处使用 Windows 10 进行演示)Python:包括但不限于 Anaconda,miniconda,Python。在 Windows 下只要能找到 python.exe 即可 Download 进入 PyCharm 官网,选择对…...
【工具类:FastJsonRedisSerializer】
工具类:FastJsonRedisSerializer 依赖yml文件FastJsonRedisSerializer.java 依赖 <!-- 主要用于处理 JSON 数据的序列化和反序列化--><!-- 序列化:将对象转换为一种可以存储或传输的格式(如 JSON、XML、二进制等)…...

Spring Cloud Alibaba-(6)Spring Cloud Gateway【网关】
Spring Cloud Alibaba-(1)搭建项目环境 Spring Cloud Alibaba-(2)Nacos【服务注册与发现、配置管理】 Spring Cloud Alibaba-(3)OpenFeign【服务调用】 Spring Cloud Alibaba-(4)Sen…...

芯科科技2024年Works With开发者大会登陆上海,物联网和人工智能的变革性融合带来无限精彩
谷歌、三星等生态大厂将带来重磅演讲和圆桌讨论,亦可切身体验多样化无线技术实作 中国,北京 – 2024年9月25日 – 安全、智能无线连接技术领域的全球领导厂商Silicon Labs(亦称“芯科科技”,NASDAQ:SLAB)&a…...

华为OD机试 - 匿名信(Python/JS/C/C++ 2024 E卷 100分)
华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试真题(Python/JS/C/C)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,…...
Python习题 208:将二维列表数组转置
(编码)将以一下二维列表类型的数组 matrix 进行转置(注:不能用内置标准库及三方库)。 matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] 转置结果 [[1, 4, 7], [2, 5, 8], [3, 6, 9]] matrix = [[1, 2, 3],[4...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...