leetcode刷题day33|动态规划Part02(62.不同路径、63. 不同路径 II、 343.整数拆分、96.不同的二叉搜索树)
62.不同路径
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
2、确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。
3、dp数组的初始化
首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
4、确定遍历顺序
dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
5、举例推导dp数组
代码如下:
class Solution {public int uniquePaths(int m, int n) {int[][] dp=new int[m][n];for(int i=0;i<m;i++) dp[i][0]=1;for(int i=0;i<n;i++) dp[0][i]=1;for(int i=1;i<m;i++){for(int j=1;j<n;j++){dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];}
}
63. 不同路径 II
思路:这个题目和上一题的区别在于增加了一个障碍物,障碍物位置的可能路径为0。同时注意初始化的时候如果初始化的两边有一个障碍物,那么障碍物后面的格子路径数都为0。
代码如下:
class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m=obstacleGrid.length;int n=obstacleGrid[0].length;int[][] dp=new int[m][n];for(int i=0;i<m && obstacleGrid[i][0]==0;i++) dp[i][0]=1;for(int j=0;j<n && obstacleGrid[0][j]==0;j++) dp[0][j]=1;for(int i=1;i<m;i++){for(int j=1;j<n;j++){dp[i][j]=obstacleGrid[i][j]==0?dp[i-1][j]+dp[i][j-1]:0;}}return dp[m-1][n-1];}
}
343.整数拆分
思路:求一个数i拆分后乘积的最大值,考虑从让j从1开始遍历计算j*(i-j)和j*dp[i-j],也就是说看分成两部分和分成多个部分哪个更大,保留更大的那个。
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。
2、确定递推公式
递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
在取最大值的时候,还需要比较dp[i]是因为对于每一个j都会得到一个dp[i],最后需要保留最大值。
3、dp的初始化
dp[0] dp[1] ,无法拆分,不进行初始化,从dp[2] = 1开始。
4、确定遍历顺序
递归公式dp[i] 依靠 dp[i - j],所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。
5、举例推导dp数组
注意:遍历j的时候遍历到i/2即可,因为前面是拆分更大的的数,当j>i/2时开始拆分小数,拆分大的数得到的乘积会更大。
代码如下:
class Solution {public int integerBreak(int n) {int[] dp=new int[n+1];dp[2]=1;for(int i=3;i<=n;i++){for(int j=1;j<=i/2;j++){dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));}}return dp[n];}
}
96.不同的二叉搜索树
思路:dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
动规五部曲
1、确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。
2、确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] (j相当于是头结点的元素,从1遍历到i为止。)
所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量。
3、dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树。初始化dp[0] = 1
4、确定遍历顺序
从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。
5、举例推导dp数组
代码如下:
class Solution {public int numTrees(int n) {int[] dp=new int[n+1];dp[0]=1;for(int i=1;i<=n;i++){for(int j=1;j<=i;j++){dp[i]+=dp[j-1]*dp[i-j];}}return dp[n];}
}
注:代码虽然看起来很简单,但思路并不容易想到,应熟悉掌握思路的形成方式以及动规五部曲的使用。
相关文章:
leetcode刷题day33|动态规划Part02(62.不同路径、63. 不同路径 II、 343.整数拆分、96.不同的二叉搜索树)
62.不同路径 机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。 动规五部曲 1、确定dp数组(dp table)以及下标的含义 dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路…...
基于Python大数据的B站热门视频的数据分析及可视化系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…...
matlab-批处理图像质量变化并形成折线图 (PSNR)
%修改路径就能用,图片分辨率要一致 %clc;clear all;close all;tic;%清理内存 file_pathE:\test\resources\image\;% 批量图像所在的文件夹下 file_save_pathE:\test\resources\SaveImage\;% 要存储的地址 img_path_listdir(strcat(file_path,*.jpg));% 获取批量bm…...
[Doc][Ros2]ros2中Qos(Quality of Service,服务质量)介绍
在 ROS 2 中,QoS(Quality of Service,服务质量)是用于控制节点之间消息传递的可靠性、历史存储和数据持久性等方面的机制。通过 QoS 设置,用户可以更细粒度地控制消息传递的行为,确保在不同网络环境或应用场景中满足特定的通信需求。 几个常用的包: QoSProfile: 含义…...
SpringBoot日志集成-LogBack
Log4J:最早的Java日志框架之一,由Apache基金会发起,提供灵活而强大的日志记录机制JDK自带的日志框架:java.util.logging.Logg,是JDK1.4之后提供的日志API,已淘汰logback: logback一个开源的日志…...
Google BigTable架构详解
文章目录 什么是BigTable?架构图一、整体架构二、数据存储与索引存储模型 三、数据拆分与存储四、元数据管理五、读写流程 其他内容概览负载平衡其他存储和数据库选项 什么是BigTable? Bigtable是Google开发的一个高性能、可扩展的分布式存储系统,用于管理大规模…...
【python】如何切换ipynb的kernel至指定conda环境
需求介绍 打开(若无新建环境) 环境 conda env list conda activate cvml conda install ipykernel python -m ipykernel install --name cvml 以上完成后,打开jupyter 创建一个python文件 在kernel——>change kernel——>python[conda env:cvml] 参考资料…...
Linux【基础指令汇总】
目录 Linux命令的特点 1、文件管理 ls命令 cp命令 mkdir命令 mv命令 pwd命令 2、文档编辑 cat命令 echo命令 rm命令 tail命令 rmdir命令 3、系统管理 rpm命令 find命令 startx命令 uname命令 vmstat命令 4、磁盘管理 df命令 fdisk命令 lsblk命令 hdpar…...
SpringCloud-EurekaClient
创建Module pom.xml <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-client</artifactId></dependency> spring:application:name: provider # 应用程序的名称,…...
配置Scrapy项目
配置Scrapy项目是一个涉及多个步骤的过程,在上一篇博客中已经写了安装Scrapy、创建Scrapy项目的步骤。 接下来应该定义Item类、编写爬虫程序以及配置settings.py文件等。以下是一个详细的配置Scrapy项目的步骤: 一、定义Item类 在项目目录下…...
航顺芯片HK32MCU受邀出席汽车芯片国产化与技术创新闭门研讨会
[中国,北京,2024年9月21日]近日,深圳市航顺芯片技术研发有限公司(以下简称“航顺芯片”)产品总监郑增忠受邀出席由中国设备管理协会新能源汽车产业发展促进中心主办的“汽车芯片国产化与技术创新闭门研讨会”。 会上航…...
【深度学习】(6)--图像数据增强
文章目录 图像数据增强一、作用二、增强方法三、代码体现四、增强体现 总结 图像数据增强 数据增强(Data Augmentation),也称为数据增广,是一种在机器学习和深度学习中常用的技术,它通过对现有数据进行各种变换和处理…...
Vscode 远程切换Python虚拟环境
在VSCode中远程切换Python虚拟环境是一个涉及多个步骤的过程,包括安装必要的扩展、连接到远程服务器、创建或激活虚拟环境,并在VSCode中选择相应的Python解释器。以下是一个详细的步骤指南,包括代码示例,旨在帮助我们完成这一过程…...
Sqoop面试整理
Sqoop(SQL-to-Hadoop)是一个用于在Hadoop和关系型数据库之间传输数据的工具。以下是一些可能在Sqoop面试中会被问到的问题及其答案: 1. 什么是Sqoop?为什么使用它? 回答: Sqoop是一个用来在Hadoop和关系型数据库(如MySQL、Oracle、PostgreSQL等)之间高效传输大数据的工具…...
PyCharm 的安装和配置
环境要求: OS:Windows / macOS / Linux (此处使用 Windows 10 进行演示)Python:包括但不限于 Anaconda,miniconda,Python。在 Windows 下只要能找到 python.exe 即可 Download 进入 PyCharm 官网,选择对…...
【工具类:FastJsonRedisSerializer】
工具类:FastJsonRedisSerializer 依赖yml文件FastJsonRedisSerializer.java 依赖 <!-- 主要用于处理 JSON 数据的序列化和反序列化--><!-- 序列化:将对象转换为一种可以存储或传输的格式(如 JSON、XML、二进制等)…...
Spring Cloud Alibaba-(6)Spring Cloud Gateway【网关】
Spring Cloud Alibaba-(1)搭建项目环境 Spring Cloud Alibaba-(2)Nacos【服务注册与发现、配置管理】 Spring Cloud Alibaba-(3)OpenFeign【服务调用】 Spring Cloud Alibaba-(4)Sen…...
芯科科技2024年Works With开发者大会登陆上海,物联网和人工智能的变革性融合带来无限精彩
谷歌、三星等生态大厂将带来重磅演讲和圆桌讨论,亦可切身体验多样化无线技术实作 中国,北京 – 2024年9月25日 – 安全、智能无线连接技术领域的全球领导厂商Silicon Labs(亦称“芯科科技”,NASDAQ:SLAB)&a…...
华为OD机试 - 匿名信(Python/JS/C/C++ 2024 E卷 100分)
华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试真题(Python/JS/C/C)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,…...
Python习题 208:将二维列表数组转置
(编码)将以一下二维列表类型的数组 matrix 进行转置(注:不能用内置标准库及三方库)。 matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] 转置结果 [[1, 4, 7], [2, 5, 8], [3, 6, 9]] matrix = [[1, 2, 3],[4...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
