一步一步丰富生成式语言模型系统
以下是这套生成式语言模型解决任务的流程图概述:
流程图说明:
- 用户输入:用户输入请求。
- 上下文相关性理解:分析输入的上下文。
- 意图识别:识别用户意图,分为查询、计算和生成内容。
- 查询意图:访问目标知识库并生成查询命令。
- 计算意图:解析公式并计算结果。
- 生成内容意图:确定生成内容类型并执行生成。
- 结果汇总:整合查询结果、计算结果和生成内容。
- 生成最终响应:将汇总的信息呈现给用户。
- 用户反馈:收集用户反馈以优化系统。
我想优化这个实现过程
好的,以下是调整后的流程图,以更清晰地展示生成查询命令的过程:
流程图说明:
- 用户输入:用户提交查询请求。
- 上下文相关性理解:分析输入的上下文信息。
- 意图识别:识别用户意图,分为查询、计算和生成内容。
- 查询意图:
- 识别目标数据库:根据用户输入确定相关的数据库。
- 分析数据库结构:理解数据库的结构和内容。
- 生成查找指令:根据输入和数据库结构生成查询指令(如SQL语句)。
- 执行查询:在数据库中执行查询。
- 反馈查询结果:返回查询结果给用户。
- 计算意图:解析用户输入的计算公式并返回计算结果。
- 生成内容意图:确定生成内容类型并生成相应内容。
- 结果汇总:整合查询结果、计算结果和生成内容。
- 生成最终响应:将整合的信息呈现给用户。
- 用户反馈:收集用户反馈以不断优化系统。
我依旧感觉这个设计还是有一些问题。
查询意图 分为两个 一个是数据库查询 一个是接口查询
明白了,这里是根据你的要求调整后的流程图,将查询意图分为数据库查询和接口查询:
流程图说明:
- 用户输入:用户提交请求。
- 上下文相关性理解:分析输入的上下文信息。
- 意图识别:识别用户意图,分为查询、计算和生成内容。
- 查询意图:
- 选择查询类型:判断是数据库查询还是接口查询。
- 数据库查询:
- 识别目标数据库、分析结构、生成查找指令、执行查询并反馈结果。
- 接口查询:
- 识别目标接口、生成接口调用指令、执行查询并反馈结果。
- 计算意图:解析计算公式并返回结果。
- 生成内容意图:确定内容类型并生成相应内容。
- 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
- 生成最终响应:将整合的信息呈现给用户。
- 用户反馈:收集反馈以优化系统。
更详细的丰富好的,这里是更加详细和丰富的流程图,加入了更多的环节和步骤:
流程图说明:
- 用户输入:用户提交请求。
- 上下文相关性理解:分析输入的上下文信息。
- 意图识别:识别用户意图,分为查询、计算和生成内容。
- 查询意图:
- 选择查询类型:判断是数据库查询还是接口查询。
- 数据库查询:
- 识别目标数据库。
- 分析数据库结构。
- 生成查找指令。
- 执行数据库查询。
- 反馈数据库查询结果。
- 数据库结果验证:检查结果的有效性。
- 有效则处理查询结果。
- 无效则返回错误信息。
- 接口查询:
- 识别目标接口。
- 生成接口调用指令。
- 执行接口查询。
- 反馈接口查询结果。
- 接口结果验证:检查结果的有效性。
- 有效则处理接口结果。
- 无效则返回错误信息。
- 计算意图:
- 解析计算公式。
- 执行计算。
- 返回计算结果。
- 计算结果验证:检查结果的有效性。
- 有效则处理计算结果。
- 无效则返回错误信息。
- 生成内容意图:
- 确定生成内容类型。
- 生成内容模板。
- 调用生成接口。
- 获取生成内容。
- 生成内容验证:检查内容的有效性。
- 有效则处理生成内容。
- 无效则返回错误信息。
- 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
- 生成最终响应:将整合的信息呈现给用户。
- 用户反馈收集:收集用户反馈以分析和优化系统。
- 反馈分析:分析用户反馈信息。
- 优化意图识别与处理流程:基于反馈进行系统优化。
- 更新知识库和模型:根据新信息更新系统。
这个过程中存在一些环节没有达到闭环。
好的,这里是经过调整后的流程图,确保在结果无效时能够回滚到生成指令的步骤重新生成指令:
流程图说明:
- 用户输入:用户提交请求。
- 上下文相关性理解:分析输入的上下文信息。
- 意图识别:识别用户意图,分为查询、计算和生成内容。
- 查询意图:
- 选择查询类型:判断是数据库查询还是接口查询。
- 数据库查询:
- 识别目标数据库。
- 分析数据库结构。
- 生成查找指令。
- 执行数据库查询。
- 反馈数据库查询结果。
- 数据库结果验证:检查结果的有效性。
- 有效则处理查询结果。
- 无效则回滚到生成指令步骤重新生成查找指令。
- 接口查询:
- 识别目标接口。
- 生成接口调用指令。
- 执行接口查询。
- 反馈接口查询结果。
- 接口结果验证:检查结果的有效性。
- 有效则处理接口结果。
- 无效则回滚到生成指令步骤重新生成接口调用指令。
- 计算意图:
- 解析计算公式。
- 执行计算。
- 返回计算结果。
- 计算结果验证:检查结果的有效性。
- 有效则处理计算结果。
- 无效则回滚到解析计算公式步骤重新解析。
- 生成内容意图:
- 确定生成内容类型。
- 生成内容模板。
- 调用生成接口。
- 获取生成内容。
- 生成内容验证:检查内容的有效性。
- 有效则处理生成内容。
- 无效则回滚到生成模板步骤重新生成内容模板。
- 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
- 生成最终响应:将整合的信息呈现给用户。
- 用户反馈收集:收集用户反馈以分析和优化系统。
- 反馈分析:分析用户反馈信息。
- 优化意图识别与处理流程:基于反馈进行系统优化。
- 更新知识库和模型:根据新信息更新系统。
好的,以下是根据你要求调整后的流程图,进一步细化自然语言处理任务库,包含不同的常见任务及其few-shot能力增强效果:
graph TD;A[用户输入] --> B[上下文相关性理解]B --> C[意图识别]C -->|查询意图| D{选择查询类型}D -->|数据库查询| E[识别目标数据库]E --> F[分析数据库结构]F --> G[生成查找指令]G --> H[执行数据库查询]H --> I[反馈数据库查询结果]I --> J[数据库结果验证]J -->|结果有效| K[处理查询结果]J -->|结果无效| G[回滚到生成指令步骤]D -->|接口查询| L[识别目标接口]L --> M[生成接口调用指令]M --> N[执行接口查询]N --> O[反馈接口查询结果]O --> P[接口结果验证]P -->|结果有效| Q[处理接口结果]P -->|结果无效| M[回滚到生成指令步骤]C -->|计算意图| R[解析计算公式]R --> S[执行计算]S --> T[返回计算结果]T --> U[计算结果验证]U -->|结果有效| V[处理计算结果]U -->|结果无效| R[回滚到解析计算步骤]C -->|生成内容意图| W[确定生成内容类型]W --> X[指令选择]X --> Y{选择指令类型}Y -->|基于RAG增强的指令| Z[生成RAG指令]Z --> AP[获取生成内容] Y -->|基于知识图谱增强的指令| AA[生成知识图谱指令]AA --> AP[获取生成内容] Y -->|基于自然语言处理任务库增强的指令| AB[指令选择:NLP任务]AB --> AC{选择NLP任务}AC -->|文本分类| AD[生成文本分类指令]AC -->|情绪识别| AE[生成情绪识别指令]AC -->|实体识别| AF[生成实体识别指令]AC -->|关系抽取| AG[生成关系抽取指令]AC -->|事件抽取| AH[生成事件抽取指令]AC -->|翻译| AI[生成翻译指令]AD --> AJ[调用文本分类接口]AE --> AK[调用情绪识别接口]AF --> AL[调用实体识别接口]AG --> AM[调用关系抽取接口]AH --> AN[调用事件抽取接口]AI --> AO[调用翻译接口]AJ --> AP[获取生成内容]AK --> APAL --> APAM --> APAN --> APAO --> APAP --> AQ[生成内容验证]AQ -->|内容有效| AR[处理生成内容]AQ -->|内容无效| X[回滚到指令选择步骤]K --> AS[结果汇总]Q --> ASV --> ASAR --> ASAS --> AT[生成最终响应]AT --> AU[用户反馈收集]AU --> AV[反馈分析]AV --> AW[优化意图识别与处理流程]AW --> AX[更新知识库和模型]
这个流程图超出了markdown在线解析上限,大家可以通过以下网站解析这段流程图
https://www.mermaidchart.com/play
流程图说明:
- 用户输入:用户提交请求。
- 上下文相关性理解:分析输入的上下文信息。
- 意图识别:识别用户意图,分为查询、计算和生成内容。
- 查询意图:
- 选择查询类型:判断是数据库查询还是接口查询。
- 数据库查询:识别目标数据库、分析结构、生成查找指令、执行查询并反馈结果,验证结果有效性。
- 接口查询:识别目标接口、生成接口调用指令、执行查询并反馈结果,验证结果有效性。
- 计算意图:解析计算公式、执行计算并返回结果,验证结果有效性。
- 生成内容意图:
- 确定生成内容类型。
- 指令选择:选择增强的生成指令类型。
- 基于RAG增强的指令。
- 基于知识图谱增强的指令。
- 基于自然语言处理任务库增强的指令,包含多种任务。
- 选择具体的NLP任务(如文本分类、情绪识别、实体识别等),生成相应的指令并调用接口。
- 生成内容验证:检查内容的有效性。
- 结果汇总:整合数据库结果、接口结果、计算结果和生成内容。
- 生成最终响应:将整合的信息呈现给用户。
- 用户反馈收集:收集用户反馈以分析和优化系统。
- 反馈分析:分析用户反馈信息。
- 优化意图识别与处理流程:基于反馈进行系统优化。
- 更新知识库和模型:根据新信息更新系统。
这种设计能够更全面地展示自然语言处理任务库的应用和增强效果,提升整体系统的灵活性和响应能力。
相关文章:
一步一步丰富生成式语言模型系统
以下是这套生成式语言模型解决任务的流程图概述: #mermaid-svg-sRHDSMUMV1utrg2F {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-sRHDSMUMV1utrg2F .error-icon{fill:#552222;}#mermaid-svg-sRHDSMUMV1u…...
Python中元组的常用方法
# 在Python中,元组(tuple)是一种不可变的序列类型,用于存储多个元素。元组的特点包括: # # 不可变性:一旦创建,元组的元素不能改变。这意味着不能添加、删除或修改元组中的元素。 # 可以包含任何…...
新版本Android Studio如何新建Java code工程
新版本Android Studio主推Kotlin,很多同学以为无法新建Java工程了,其实是可以的,如果要新建Java代码的Android工程,在New Project的时候需要选择Empty Views Activity,如图所示,gradle也建议选为build.grad…...
2024年世界职业院校技能大赛:全面升级的国际化职业技能竞赛
近日,中华人民共和国教育部发布了《2024年世界职业院校技能大赛实施方案》,宣布从2024年起将全国职业院校技能大赛升级为世界职业院校技能大赛。这一重大决策不仅标志着我国职业教育竞赛平台的全面国际化,更彰显了中国在全球职业教育领域的引领作用和战略眼光,具体内…...
前端vue相关常见面试题,包含MVVM、双向绑定原理、性能优化、vue2和vue3性能对比等
vue面试题 MVVM 概念 model view viewModel 本质上是mvc(程序分层开发思想) 将viewModel的状态和行为抽象化,viewmodel将视图ui和业务逻辑分开,去除model的数据,同时处理view中需要展示的内容和业务逻辑 view视图层 …...
生信初学者教程(十二):数据汇总
文章目录 介绍加载R包导入数据汇总表格输出结果总结介绍 在本教程中,汇总了三个肝细胞癌(HCC)的转录组数据集,分别是LIRI-JP,LIHC-US/TCGA-LIHC和GSE14520,以及一个HCC的单细胞数据集GSE149614的临床表型信息。这些数据集为科研人员提供了丰富的基因表达数据和相关的临床…...
常用大语言模型简单介绍
LLaMA(Large Language Model Meta AI)和 Qwen是两个不同的大语言模型,它们在开发背景、设计目标和使用场景等方面有所不同。 1. LLaMA: 开发背景: LLaMA 是由Facebook开发的大语言模型,主要针对学术研究和开源领域。它的设计初衷…...
云计算Openstack
OpenStack是一个开源的云计算管理平台项目,由美国国家航空航天局(NASA)和Rackspace公司合作研发并发起,以Apache许可证授权。该项目旨在为公共及私有云的建设与管理提供软件支持,通过一系列相互协作的组件实现云计算服…...
ClickHouse复杂查询单表亿级数据案例(可导出Excel)
通过本篇博客,读者可以了解到如何在 ClickHouse 中高效地创建和管理大规模销售数据。随机数据生成和复杂查询的示例展示了 ClickHouse 的强大性能和灵活性。掌握这些技能后,用户能够更好地进行数据分析和决策支持,提升业务洞察能力。 表结构…...
ST-GCN模型实现花样滑冰动作分类
加入深度实战社区:www.zzgcz.com,免费学习所有深度学习实战项目。 1. 项目简介 本项目实现了A042-ST-GCN模型,用于对花样滑冰动作进行分类。花样滑冰作为一项融合了舞蹈与竞技的运动,其复杂的动作结构和多变的运动轨迹使得动作识别成为一个具…...
计算机网络基础--认识协议
目录 前言 一、IP地址与端口 二、网络协议 1.网络体系结构框架 2.网络字节序 前言 提示:这里可以添加本文要记录的大概内容: 计算机网络涉及非常广泛,这篇文章主要对计算机网络有个认识 提示:以下是本篇文章正文内容&#x…...
基本控制结构2
顺序结构 程序按照语句的书写次序顺序执行。 选择结构 判断选择结构又称条件分支结构,是一种基本的程序结构类型。 在程序设计中,当需要进行选择、判断和处理的时候,就要用到条件分支结构。 条件分支结构的语句一般包括if语句、if–else…...
php 平滑重启 kill -SIGUSR2 <PID> pgrep命令查看进程号
有时候我们使用nginx 大家都知道平滑重启命令: /web/nginx/sbin/nginx -s reload 但大家对php-fpm 重启 可能就是简单暴力的kill 直接搞起了 下面介绍一个sh 文件名保存为start_php.sh 来对php-fpm 进行平滑重启 #!/bin/bash# 检查 PHP-FPM 是否运行 if ! pgrep php-…...
实时美颜功能技术揭秘:视频美颜SDK与API的技术剖析
当下,用户希望在视频直播中呈现出最佳状态,这推动了视频美颜SDK和API的迅速发展。本文将深入剖析这项技术的核心原理、应用场景以及未来趋势。 一、实时美颜技术的基本原理 在实现这些效果的过程中,视频美颜SDK通常会使用以下几种技术&…...
word2vector训练代码详解
目录 1.代码实现 2.知识点 1.代码实现 #导包 import math import torch from torch import nn import dltools #加载PTB数据集 ,需要把PTB数据集的文件夹放在代码上一级目录的data文件中,不用解压 #批次大小、窗口大小、噪声词大小 batch_size, ma…...
Python的风格应该是怎样的?除语法外,有哪些规范?
写代码不那么pythonic风格的,多多少少都会让人有点难受。 什么是pythonic呢?简而言之,这是一种写代码时遵守的规范,主打简洁、清晰、可读性高,符合PEP 8(Python代码样式指南)约定的模式。 Pyth…...
net core mvc 数据绑定 《1》
其它的绑定 跟net mvc 一样 》》MVC core 、framework 一样 1 模型绑定数组类型 2 模型绑定集合类型 3 模型绑定复杂的集合类型 4 模型绑定源 》》》》 模型绑定 使用输入数据的原生请求集合是可以工作的【request[],Querystring,request.from[]】, 但是从可读…...
python为姓名注音实战案例
有如下数据,需要对名字注音。 数据样例:👇 一、实现过程 前提条件:由于会用到pypinyin库,所以一定得提前安装。 pip install pypinyin1、详细代码: from pypinyin import pinyin, Style# 输入数据 names…...
MATLAB中的艺术:用爱心形状控制坐标轴
在MATLAB中,坐标轴控制是绘图和数据可视化中的一个重要方面。通过精细地管理坐标轴,我们不仅可以改善图形的视觉效果,还可以赋予图形更深的情感寓意。本文将介绍如何在MATLAB中使用坐标轴控制来绘制一个爱心形状,并探讨其背后的技…...
基于mybatis-plus创建springboot,添加增删改查功能,使用postman来测试接口出现的常见错误
1 当你在使用postman检测 添加和更新功能时,报了一个500错误 查看idea发现是: Data truncation: Out of range value for column id at row 1 通过翻译:数据截断:表单第1行的“id”列出现范围外值。一般情况下,出现这个…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
