当前位置: 首页 > news >正文

【PyTorch】图像分割

图像分割是什么

Image Segmentation
将图像每一个像素分类
在这里插入图片描述

图像分割分类

  1. 超像素分割:少量超像素代替大量像素,常用于图像预处理
  2. 语义分割:逐像素分类,无法区分个体
  3. 实例分割:对个体目标进行分割
  4. 全景分割:语义分割结合实例分割
    在这里插入图片描述

本文讨论的是语义分割

模型如何完成图像分割

计算机:3-d张量 → 计算机:3-d张量
图像分割由模型与人类配合完成
模型:将数据映射到特征
人类:定义特征的物理意义,解决实际问题

PyTorch-Hub

PyTorch模型库,有大量模型供开发者调用 Link

1.torch.hub.load(‘pytorch/vision’, ‘deeplabv3_resnet101’,pretrained=True)

model=torch.hub.load(github, model, *args, **kwargs)
功能:加载模型
主要参数:
- github:str, 项目名,eg:pytorch/vision,<repo_owner/repo_name[:tag_name]>
- model: str, 模型名

2.torch.hub.list(github, force_reload=False)
3.torch.hub.help(github, model, force_reload=False)

深度学习中的图像分割模型

FCN

Fully Convolutional Networks for Semantic Segmentation
在这里插入图片描述

最主要贡献:
利用全卷积完成pixelwise prediction

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation
在这里插入图片描述

DeepLab系列

V1

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
在这里插入图片描述
主要特点:

  1. 孔洞卷积:借助孔洞卷积,增大感受野
  2. CRF:采用CRF进行mask后处理

V2

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
在这里插入图片描述
主要特点:

  1. ASPP(Atrous Spatial Pyramid Pooling):解决多尺度问题

V3

Rethinking Atrous Convolution for Semantic Image Segmentation
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

主要特点:

  1. 孔洞卷积的串行
  2. ASPP的并行

V3+

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
在这里插入图片描述
在这里插入图片描述
主要特点:
deeplabv3基础上机上Encoder-Decoder思想

综述

Deep Semantic Segmentation of Natural and Medical Images: A Review
在这里插入图片描述
图像分割资源:
https://github.com/shawnbit/unet-family
https://github.com/yassouali/pytorch-segmentation

Unet实现人像抠图 (Portrait Matting)

数据来源:https://github.com/PetroWu/AutoPortraitMatting

未完待续……

相关文章:

【PyTorch】图像分割

图像分割是什么 Image Segmentation 将图像每一个像素分类 图像分割分类 超像素分割&#xff1a;少量超像素代替大量像素&#xff0c;常用于图像预处理语义分割&#xff1a;逐像素分类&#xff0c;无法区分个体实例分割&#xff1a;对个体目标进行分割全景分割&#xff1a;…...

如何快速建立自己的异地互联的远程视频监控系统,通过web浏览器可以直接查看公网上的监控视频(上)

目录 一、需求 二、方案 2.1、计划方案 2.2、实施准备 2.2.1所需配置的产品和服务 2.2.1.1云主机 &#xff08;1&#xff09;选择云平台 &#xff08;2&#xff09;配置云服务器 2.2.2.2视频监控平台软件 &#xff08;1&#xff09;视频监控平台软件 &#xff08;2&am…...

实验2思科网院项目2.7.2-packet-tracer---configure-single-area-ospfv2---实践练习

实践练习 2.7.2-packet-tracer---configure-single-area-ospfv2---实践练习physical-mode 实验拓扑 相关设备配置 实验目标: 第 1 部分&#xff1a;构建网络并配置设备的基本设置 第 2 部分&#xff1a;配置和验证单区域 OSPFv2 的基本部署 第 3 部分&#xff1a;优化和验…...

Nginx实战经验分享:从小白到专家的成长历程!

目录 一、Nginx概述1、Nginx简介&#xff08;1&#xff09;事件驱动模型&#xff08;2&#xff09;异步处理&#xff08;3&#xff09;模块化设计&#xff08;4&#xff09;高性能&#xff08;5&#xff09;反向代理&#xff08;6&#xff09;负载均衡&#xff08;7&#xff09…...

从画质设置看游戏引擎(其一)

前往我的博客&#xff0c;获取无广告&#xff0c;更好的阅读体验 1. 抗锯齿&#xff08;Anti-Aliasing&#xff09; 1.1 锯齿问题的起因 在三维模型的世界中&#xff0c;模型是连续的&#xff0c;但是屏幕像素是不连续&#xff0c;是离散的&#xff1b; 即当一个圆形显示在显…...

#git 问题failed to resolve head as a valid ref

问题如下&#xff1a; 解决方法&#xff1a; 1、运行 git fsck --full 可以查看具体error信息&#xff0c;一般都是head索引问题 2、.git\refs\heads\xxx&#xff08;当前分支&#xff09;txt编辑器打开显示乱码&#xff0c;而不是hash编码 3、在.git\logs\refs\heads\xxx&a…...

YOLOv11,地瓜RDK X5开发板,TROS端到端140FPS!

YOLOv11 Detect YOLOv11 Detect YOLO介绍性能数据 (简要) RDK X5 & RDK X5 Module 模型下载地址输入输出数据公版处理流程优化处理流程步骤参考 环境、项目准备导出为onnxPTQ方案量化转化使用hb_perf命令对bin模型进行可视化, hrt_model_exec命令检查bin模型的输入输出情况…...

Python精选200Tips:181-182

针对图像的经典卷积网络结构进化史及可视化 针对图像的经典卷积网络结构进化史及可视化&#xff08;续&#xff09;P181--MobileNet【2017】模型结构及创新性说明模型结构代码MobileNet V1版本MobileNet V2版本MobileNet V3 版本Small版本Large版本 P182--EfficientNet【2019】…...

SpringCloud 配置 feign.hystrix.enabled: true 不生效

SpringCloud 配置 feign.hystrix.enabled: true 不生效的原因 feign 启用 hystrix feign 默认没有启用 hystrix&#xff0c;添加配置&#xff0c;启用 hystrix feign.hystrix.enabledtrue application.yml 添加配置 feign:hystrix:enabled: true启用 hystrix 后&#xff0c;访…...

9.24-k8s服务发布

Ingress 使用域名发布 K8S 服务 部署项目 一、先部署mariadb [rootk8s-master ~]# mkdir aaa [rootk8s-master ~]# cd aaa/ [rootk8s-master aaa]# # 先部署mariadb [rootk8s-master aaa]# # configmap [rootk8s-master aaa]# vim mariadb-configmap.yaml apiVersion: v1 ki…...

UI设计师面试整理-作品集展示

在UI设计师的面试中,作品集展示是非常关键的一环。它不仅展示了你的设计技能和风格,也让面试官了解你的设计思维和解决问题的能力。下面是如何有效地准备和展示你的作品集的建议: 1. 选择合适的项目 ● 多样性:选择能展示你在不同领域或平台上的设计能力的项目。确保作品集…...

CMU 10423 Generative AI:lec10(few-shot、提示工程、上下文学习)

文章目录 1 概述2 摘录2.1 zero-shot 和 few-shot一、Zero-shot Learning&#xff08;零样本学习&#xff09;特点&#xff1a;工作原理&#xff1a;优点&#xff1a;缺点&#xff1a; 二、Few-shot Learning&#xff08;少样本学习&#xff09;特点&#xff1a;工作原理&#…...

做数据抓取工作要如何选择ip池

选择合适的IP池对于数据抓取工作至关重要。一个优质的IP池可以提高抓取的效率和成功率&#xff0c;同时减少被目标网站封禁的风险。以下是选择IP池时需要考虑的一些关键因素&#xff1a; 1. IP类型 住宅IP&#xff1a;住宅IP通常来自真实用户&#xff0c;难以被识别为代理。它…...

防止电脑电池老化,禁止usb或者ac接口调试时充电

控制android系统&#xff0c;开发者模式&#xff0c;开启和禁止充电 连接 Android 手机到电脑的 USB 端口。 下载并安装 Android Debug Bridge (ADB) 工具[1]。 USB&#xff1a; 在命令行中输入 adb shell dumpsys battery set usb 0&#xff0c;以禁止 USB 充电。 在命令…...

智权半导体/SmartDV力助高速发展的中国RISC-V CPU IP厂商走上高质量发展之道

作者&#xff1a;Karthik Gopal SmartDV Technologies亚洲区总经理 智权半导体科技&#xff08;厦门&#xff09;有限公司总经理 进入2024年&#xff0c;全球RISC-V社群在技术和应用两个方向上都在加快发展&#xff0c;中国国内的RISC-V CPU IP提供商也在内核性能和应用扩展…...

利用vue-capper封装一个可以函数式调用图片裁剪组件

1. 效果 const cropData await wqCrop({prop:{img,autoCrop: true, // 是否开启截图框maxImgSize: 600,autoCropWidth: 30,canMove: true, // 图片是否可移动canMoveBox: true, // 截图框是否可移动fixedBox: false, // 截图框是否固定}});console.log(cropData);使用wqCrop会…...

在系统开发中提升 Excel 数据导出一致性与可维护性的统一规范与最佳实践

背景&#xff1a; 在系统开发过程中&#xff0c;数据导出为 Excel 格式是一个常见的需求。然而&#xff0c;由于各个开发人员的编码习惯和实现方式不同&#xff0c;导致导出代码风格不一。有的人使用第三方库&#xff0c;有的人则自定义实现。这种多样化不仅影响了代码的一致性…...

SpringAOP学习

面向切面编程&#xff0c;指导开发者如何组织程序结构 增强原始设计的功能 oop:面向对象编程 1.导入aop相关坐标&#xff0c;创建 <!--spring依赖--><dependencies><dependency><groupId>org.springframework</groupId><artifactId>spri…...

智能网联汽车飞速发展,安全危机竟如影随形,如何破局?

随着人工智能、5G通信、大数据等技术的飞速发展&#xff0c;智能网联汽车正在成为全球汽车行业的焦点。特别是我国智能网联汽车市场规模近年来呈现快速增长态势&#xff0c;彰显了行业蓬勃发展的活力与潜力。然而&#xff0c;车联网技术的广泛应用也带来了一系列网络安全问题&a…...

Android常用C++特性之std::function

声明&#xff1a;本文内容生成自ChatGPT&#xff0c;目的是为方便大家了解学习作为引用到作者的其他文章中。 std::function 是 C 标准库中的一个 函数包装器&#xff0c;用于存储、复制、调用任何可以调用的目标&#xff08;如普通函数、lambda 表达式、函数对象、成员函数等&…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...