当前位置: 首页 > news >正文

【PyTorch】图像分割

图像分割是什么

Image Segmentation
将图像每一个像素分类
在这里插入图片描述

图像分割分类

  1. 超像素分割:少量超像素代替大量像素,常用于图像预处理
  2. 语义分割:逐像素分类,无法区分个体
  3. 实例分割:对个体目标进行分割
  4. 全景分割:语义分割结合实例分割
    在这里插入图片描述

本文讨论的是语义分割

模型如何完成图像分割

计算机:3-d张量 → 计算机:3-d张量
图像分割由模型与人类配合完成
模型:将数据映射到特征
人类:定义特征的物理意义,解决实际问题

PyTorch-Hub

PyTorch模型库,有大量模型供开发者调用 Link

1.torch.hub.load(‘pytorch/vision’, ‘deeplabv3_resnet101’,pretrained=True)

model=torch.hub.load(github, model, *args, **kwargs)
功能:加载模型
主要参数:
- github:str, 项目名,eg:pytorch/vision,<repo_owner/repo_name[:tag_name]>
- model: str, 模型名

2.torch.hub.list(github, force_reload=False)
3.torch.hub.help(github, model, force_reload=False)

深度学习中的图像分割模型

FCN

Fully Convolutional Networks for Semantic Segmentation
在这里插入图片描述

最主要贡献:
利用全卷积完成pixelwise prediction

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation
在这里插入图片描述

DeepLab系列

V1

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
在这里插入图片描述
主要特点:

  1. 孔洞卷积:借助孔洞卷积,增大感受野
  2. CRF:采用CRF进行mask后处理

V2

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
在这里插入图片描述
主要特点:

  1. ASPP(Atrous Spatial Pyramid Pooling):解决多尺度问题

V3

Rethinking Atrous Convolution for Semantic Image Segmentation
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

主要特点:

  1. 孔洞卷积的串行
  2. ASPP的并行

V3+

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
在这里插入图片描述
在这里插入图片描述
主要特点:
deeplabv3基础上机上Encoder-Decoder思想

综述

Deep Semantic Segmentation of Natural and Medical Images: A Review
在这里插入图片描述
图像分割资源:
https://github.com/shawnbit/unet-family
https://github.com/yassouali/pytorch-segmentation

Unet实现人像抠图 (Portrait Matting)

数据来源:https://github.com/PetroWu/AutoPortraitMatting

未完待续……

相关文章:

【PyTorch】图像分割

图像分割是什么 Image Segmentation 将图像每一个像素分类 图像分割分类 超像素分割&#xff1a;少量超像素代替大量像素&#xff0c;常用于图像预处理语义分割&#xff1a;逐像素分类&#xff0c;无法区分个体实例分割&#xff1a;对个体目标进行分割全景分割&#xff1a;…...

如何快速建立自己的异地互联的远程视频监控系统,通过web浏览器可以直接查看公网上的监控视频(上)

目录 一、需求 二、方案 2.1、计划方案 2.2、实施准备 2.2.1所需配置的产品和服务 2.2.1.1云主机 &#xff08;1&#xff09;选择云平台 &#xff08;2&#xff09;配置云服务器 2.2.2.2视频监控平台软件 &#xff08;1&#xff09;视频监控平台软件 &#xff08;2&am…...

实验2思科网院项目2.7.2-packet-tracer---configure-single-area-ospfv2---实践练习

实践练习 2.7.2-packet-tracer---configure-single-area-ospfv2---实践练习physical-mode 实验拓扑 相关设备配置 实验目标: 第 1 部分&#xff1a;构建网络并配置设备的基本设置 第 2 部分&#xff1a;配置和验证单区域 OSPFv2 的基本部署 第 3 部分&#xff1a;优化和验…...

Nginx实战经验分享:从小白到专家的成长历程!

目录 一、Nginx概述1、Nginx简介&#xff08;1&#xff09;事件驱动模型&#xff08;2&#xff09;异步处理&#xff08;3&#xff09;模块化设计&#xff08;4&#xff09;高性能&#xff08;5&#xff09;反向代理&#xff08;6&#xff09;负载均衡&#xff08;7&#xff09…...

从画质设置看游戏引擎(其一)

前往我的博客&#xff0c;获取无广告&#xff0c;更好的阅读体验 1. 抗锯齿&#xff08;Anti-Aliasing&#xff09; 1.1 锯齿问题的起因 在三维模型的世界中&#xff0c;模型是连续的&#xff0c;但是屏幕像素是不连续&#xff0c;是离散的&#xff1b; 即当一个圆形显示在显…...

#git 问题failed to resolve head as a valid ref

问题如下&#xff1a; 解决方法&#xff1a; 1、运行 git fsck --full 可以查看具体error信息&#xff0c;一般都是head索引问题 2、.git\refs\heads\xxx&#xff08;当前分支&#xff09;txt编辑器打开显示乱码&#xff0c;而不是hash编码 3、在.git\logs\refs\heads\xxx&a…...

YOLOv11,地瓜RDK X5开发板,TROS端到端140FPS!

YOLOv11 Detect YOLOv11 Detect YOLO介绍性能数据 (简要) RDK X5 & RDK X5 Module 模型下载地址输入输出数据公版处理流程优化处理流程步骤参考 环境、项目准备导出为onnxPTQ方案量化转化使用hb_perf命令对bin模型进行可视化, hrt_model_exec命令检查bin模型的输入输出情况…...

Python精选200Tips:181-182

针对图像的经典卷积网络结构进化史及可视化 针对图像的经典卷积网络结构进化史及可视化&#xff08;续&#xff09;P181--MobileNet【2017】模型结构及创新性说明模型结构代码MobileNet V1版本MobileNet V2版本MobileNet V3 版本Small版本Large版本 P182--EfficientNet【2019】…...

SpringCloud 配置 feign.hystrix.enabled: true 不生效

SpringCloud 配置 feign.hystrix.enabled: true 不生效的原因 feign 启用 hystrix feign 默认没有启用 hystrix&#xff0c;添加配置&#xff0c;启用 hystrix feign.hystrix.enabledtrue application.yml 添加配置 feign:hystrix:enabled: true启用 hystrix 后&#xff0c;访…...

9.24-k8s服务发布

Ingress 使用域名发布 K8S 服务 部署项目 一、先部署mariadb [rootk8s-master ~]# mkdir aaa [rootk8s-master ~]# cd aaa/ [rootk8s-master aaa]# # 先部署mariadb [rootk8s-master aaa]# # configmap [rootk8s-master aaa]# vim mariadb-configmap.yaml apiVersion: v1 ki…...

UI设计师面试整理-作品集展示

在UI设计师的面试中,作品集展示是非常关键的一环。它不仅展示了你的设计技能和风格,也让面试官了解你的设计思维和解决问题的能力。下面是如何有效地准备和展示你的作品集的建议: 1. 选择合适的项目 ● 多样性:选择能展示你在不同领域或平台上的设计能力的项目。确保作品集…...

CMU 10423 Generative AI:lec10(few-shot、提示工程、上下文学习)

文章目录 1 概述2 摘录2.1 zero-shot 和 few-shot一、Zero-shot Learning&#xff08;零样本学习&#xff09;特点&#xff1a;工作原理&#xff1a;优点&#xff1a;缺点&#xff1a; 二、Few-shot Learning&#xff08;少样本学习&#xff09;特点&#xff1a;工作原理&#…...

做数据抓取工作要如何选择ip池

选择合适的IP池对于数据抓取工作至关重要。一个优质的IP池可以提高抓取的效率和成功率&#xff0c;同时减少被目标网站封禁的风险。以下是选择IP池时需要考虑的一些关键因素&#xff1a; 1. IP类型 住宅IP&#xff1a;住宅IP通常来自真实用户&#xff0c;难以被识别为代理。它…...

防止电脑电池老化,禁止usb或者ac接口调试时充电

控制android系统&#xff0c;开发者模式&#xff0c;开启和禁止充电 连接 Android 手机到电脑的 USB 端口。 下载并安装 Android Debug Bridge (ADB) 工具[1]。 USB&#xff1a; 在命令行中输入 adb shell dumpsys battery set usb 0&#xff0c;以禁止 USB 充电。 在命令…...

智权半导体/SmartDV力助高速发展的中国RISC-V CPU IP厂商走上高质量发展之道

作者&#xff1a;Karthik Gopal SmartDV Technologies亚洲区总经理 智权半导体科技&#xff08;厦门&#xff09;有限公司总经理 进入2024年&#xff0c;全球RISC-V社群在技术和应用两个方向上都在加快发展&#xff0c;中国国内的RISC-V CPU IP提供商也在内核性能和应用扩展…...

利用vue-capper封装一个可以函数式调用图片裁剪组件

1. 效果 const cropData await wqCrop({prop:{img,autoCrop: true, // 是否开启截图框maxImgSize: 600,autoCropWidth: 30,canMove: true, // 图片是否可移动canMoveBox: true, // 截图框是否可移动fixedBox: false, // 截图框是否固定}});console.log(cropData);使用wqCrop会…...

在系统开发中提升 Excel 数据导出一致性与可维护性的统一规范与最佳实践

背景&#xff1a; 在系统开发过程中&#xff0c;数据导出为 Excel 格式是一个常见的需求。然而&#xff0c;由于各个开发人员的编码习惯和实现方式不同&#xff0c;导致导出代码风格不一。有的人使用第三方库&#xff0c;有的人则自定义实现。这种多样化不仅影响了代码的一致性…...

SpringAOP学习

面向切面编程&#xff0c;指导开发者如何组织程序结构 增强原始设计的功能 oop:面向对象编程 1.导入aop相关坐标&#xff0c;创建 <!--spring依赖--><dependencies><dependency><groupId>org.springframework</groupId><artifactId>spri…...

智能网联汽车飞速发展,安全危机竟如影随形,如何破局?

随着人工智能、5G通信、大数据等技术的飞速发展&#xff0c;智能网联汽车正在成为全球汽车行业的焦点。特别是我国智能网联汽车市场规模近年来呈现快速增长态势&#xff0c;彰显了行业蓬勃发展的活力与潜力。然而&#xff0c;车联网技术的广泛应用也带来了一系列网络安全问题&a…...

Android常用C++特性之std::function

声明&#xff1a;本文内容生成自ChatGPT&#xff0c;目的是为方便大家了解学习作为引用到作者的其他文章中。 std::function 是 C 标准库中的一个 函数包装器&#xff0c;用于存储、复制、调用任何可以调用的目标&#xff08;如普通函数、lambda 表达式、函数对象、成员函数等&…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...

持续交付的进化:从DevOps到AI驱动的IT新动能

文章目录 一、持续交付的本质&#xff1a;从手动到自动的交付飞跃关键特性案例&#xff1a;电商平台的高效部署 二、持续交付的演进&#xff1a;从CI到AI驱动的未来发展历程 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/101f72defaf3493ba0ba376bf09367a2.png)中国…...

第6章:Neo4j数据导入与导出

在实际应用中&#xff0c;数据的导入与导出是使用Neo4j的重要环节。无论是初始数据加载、系统迁移还是数据备份&#xff0c;都需要高效可靠的数据传输机制。本章将详细介绍Neo4j中的各种数据导入与导出方法&#xff0c;帮助读者掌握不同场景下的最佳实践。 6.1 数据导入策略 …...

Java求职者面试:微服务技术与源码原理深度解析

Java求职者面试&#xff1a;微服务技术与源码原理深度解析 第一轮&#xff1a;基础概念问题 1. 请解释什么是微服务架构&#xff0c;并说明其优势和挑战。 微服务架构是一种将单体应用拆分为多个小型、独立的服务的软件开发方法。每个服务都运行在自己的进程中&#xff0c;并…...