Azure OpenAI检索增强微调:使用 GPT-4o 对 GPT-4o mini 进行微调,以适应特定领域的应用
定制是关键!
生成式人工智能对企业最有影响力的应用之一是创建自然语言界面,这些界面经过定制,可以使用特定领域和用例数据来提供更好、更准确的响应。这意味着回答有关特定领域的问题,例如银行、法律和医疗领域。
我们经常谈论实现这一目标的两种方法:
- 检索增强生成 (RAG):将这些文档存储在向量数据库中,并在查询时根据它们与问题的语义相似性检索文档,然后将它们用作 LLM 的上下文。
- 监督微调 (SFT):根据代表特定领域知识的一组提示和响应来训练现有的基础模型。
虽然大多数尝试使用 RAG 的组织都希望利用其内部知识库来扩展 LLM 的知识,但许多组织如果不进行重大优化就无法实现预期结果。同样,整理足够大且高质量的数据集以进行微调也是一项挑战。这两种方法都有局限性:微调将模型限制在其训练数据中,使其容易受到近似和幻觉的影响,而 RAG 为模型奠定了基础,但仅根据文档与查询的语义接近度来检索文档——这可能不相关,并且可能导致推理不充分的答案。
参考链接:
微软 Azure OpenAI 试用申请

RAFT 来救援!

我们可以结合使用 RAG或微调,而不是只选择其中一种!将 RAG 视为一场开卷考试:模型查找相关文档来生成答案。微调就像一场闭卷考试:模型依赖于预先训练的知识。就像在考试中一样,最好的结果来自于学习和随手记笔记。
检索感知微调 (RAFT) 是一种强大的技术,可用于为特定领域的开放式设置(例如域内 RAG)准备微调数据。它改变了语言模型的格局,结合了 RAG 和微调的最佳部分。RAFT 通过提高模型理解和使用特定领域知识的能力,帮助模型针对特定领域进行量身定制。它是 RAG 和特定领域的 SFT 之间的最佳结合点。
它是如何工作的?
RAFT 分为三个步骤:
- 准备数据集来教模型如何回答有关您的领域的问题。
- 使用准备好的数据集对模型进行微调
- 评估新的、定制的、领域适应模型的质量
RAFT 的关键在于训练数据生成,其中每个数据点都包含一个问题 (Q)、一组文档 (Dk) 和一个思路链式答案 (A)。文档分为包含答案的 Oracle 文档 (Do) 和不包含答案的干扰文档 (Di)。微调教会模型区分这些文档,从而生成一个自定义模型,该模型的表现优于仅使用 RAG 或微调的原始模型。我们使用 GPT-4o 生成训练数据并微调 GPT-4o mini,从而根据您的用例量身定制经济高效、速度更快的模型。这种称为蒸馏的技术使用 GPT-4o 作为教师模型,使用 4o-mini 作为学生模型。
在本博客的下一部分中,我们将开始实践。如果您想自己跟进,或查看参考代码,请查看https://aka.ms/aoai-raft-workshop。我们将为银行用例创建一个领域适配模型,该模型能够回答有关银行在线工具和账户的问题。
笔记本 1- 生成 RAFT 训练数据
首先收集特定领域的文档;在我们的示例中,这些是银行文档的 PDF。为了生成我们的训练数据,我们将 PDFS 转换为 markdown 文本格式。该文档为 PDF 格式,包含许多表格和图表,我们将使用 GPT-4o 将页面内容转换为 markdown。我们使用 Azure OpenAI GPT 4o 将所有这些信息提取到 Markdown 文件中,以用于下游处理。然后,我们使用 GPT-4o(我们的教师模型)生成合成的“问题-文档-答案”三元组,包括“黄金文档”(高度相关)和“干扰项”(误导)的示例。这将确保模型学会区分相关信息和不相关信息。RAFT利用思维链 (CoT) 过程,通过集成 CoT RAFT 过程提高了模型提取信息和执行逻辑推理的能力。这种方法有助于防止过度拟合并增强训练鲁棒性,使其对于需要详细和结构化思维的任务特别有效
然后,我们将这些数据格式化以进行微调,将其分为训练集、验证集和测试集。验证集用于训练,测试集用于最后测量性能。
笔记本2-RAFT微调
现在是时候教我们的学生了!准备好训练和验证数据后,下一步是将这些数据上传到 Azure OpenAI 并创建微调作业。这非常简单:在 AI Studio 中,选择您的模型、上传您的训练和验证数据以及设置您的训练参数只需点击几下即可。我们将选择 4o-mini 作为我们的学生模型进行训练。 在实验室中,我们将向您展示如何使用 SDK 上传和触发微调作业。UI 使其成为一种简单的实验方式,而 SDK 方法是生产化和启用 llmops 策略以在生产中部署的首选方式。

一旦微调作业开始运行,我们就可以监控其进度,并在完成后在 Azure OpenAI Studio 中分析微调后的模型。最后,我们使用微调后的模型创建一个新的部署,准备用于我们的专业领域任务。
笔记本 3 - 我们的 RAFT 模型真的比基础模型更好吗?让我们检查一下!
您可以首先查看 AI Studio 返回的内置指标,显示损失和准确度。我们希望看到准确度提高,而损失下降:

但是,我们可以做更多的事情来衡量模型的质量。还记得我们一开始的测试数据集吗?这就是我们准备它的原因!
虽然有很多评估选项,包括 AI Studio 评估,但在我们的示例中,我们使用开源库 RAGAS,它使用答案相关性、忠实度、答案相似性和答案正确性等指标来评估 RAG 管道。这些指标要么依靠 LLM 作为评判者,要么依靠嵌入模型来评估生成答案的质量和准确性。

gpt4o-mini 与 gpt4o-mini-raft 对比
我们可以通过调整训练参数和/或生成额外的训练数据来进一步改善模型指标。
相关文章:
Azure OpenAI检索增强微调:使用 GPT-4o 对 GPT-4o mini 进行微调,以适应特定领域的应用
定制是关键! 生成式人工智能对企业最有影响力的应用之一是创建自然语言界面,这些界面经过定制,可以使用特定领域和用例数据来提供更好、更准确的响应。这意味着回答有关特定领域的问题,例如银行、法律和医疗领域。 我们经常谈…...
ISP Pipeline
系列文章目录 文章目录 系列文章目录前言一、RAW域二、RGB域三、YUV域总结 前言 一、RAW域 黑电平校正(BLC)数字增益调整(DGain)自动白平衡(AWB)局部色调映射(LTM)坏点修复…...
< IDE编程环境配置>
IDE编程环境配置 LIB,DLL区别 我们在写项目时会链接(调用)第3方库,或者比如在vs的解决方案solution创建项目project时,不仅可以开发可执行程序exe(可单独运行)(windows/控制台 应用…...
Golang | Leetcode Golang题解之第448题找到所有数组中消失的数字
题目: 题解: func findDisappearedNumbers(nums []int) (ans []int) {n : len(nums)for _, v : range nums {v (v - 1) % nnums[v] n}for i, v : range nums {if v < n {ans append(ans, i1)}}return }...
【Spring Boot 入门三】Spring Boot与数据库集成 - 构建数据驱动的应用
一、引言 在之前的文章中,我们已经对Spring Boot有了初步的认识,了解了如何构建第一个Spring Boot应用,以及如何通过配置文件来掌控应用的设置。这些知识为我们进一步探索Spring Boot与数据库的集成奠定了坚实的基础。 数据库是现代应用的核…...
Web 服务器与动态脚本语言通信的接口协议有哪些
Web 服务器与动态脚本语言通信的接口协议主要有以下几种: 一、FastCGI(Fast Common Gateway Interface) 特点:使用持久进程处理请求,减少了进程启动和关闭的开销,提高了性能和可扩展性。多个请求可由同一个…...
ESXI识别服务器磁盘,虚拟机显示无效
ESXI识别服务器磁盘,虚拟机显示无效 系统意外断电识别不到磁盘的情况下可以管理-》硬件-》搜索磁盘名称,选择切换直通,则虚拟机正常。...
【C++】 vector 迭代器失效问题
【C】 vector 迭代器失效问题 一. 迭代器失效问题分析二. 对于vector可能会导致其迭代器失效的操作有:1. 会引起其底层空间改变的操作,都有可能是迭代器失效2. 指定位置元素的删除操作--erase3. Linux下,g编译器对迭代器失效的检测并不是非常…...
【Spring基础3】- Spring的入门程序
目录 3-1 Spring的下载3-2 Spring的 jar 包3-3 第一个 Spring程序第一步:添加spring context的依赖,pom.xml配置如下第二步:添加junit依赖第三步:定义bean:User第四步:编写spring的配置文件:bea…...
golang学习笔记22-面向对象(四):接口【重要】
本节也是GO核心部分,很重要。 注:由于导包语句已经在19讲(笔记19:面向对象的引入)展示过了,所以这里就不展示了。 一、定义与实现 (1)接口中可以定义一组方法,但不需要实现,不需要…...
SpringBoot技术栈:打造下一代网上租赁系统
第2章 关键技术简介 2.1 Java技术 Java是一种非常常用的编程语言,在全球编程语言排行版上总是前三。在方兴未艾的计算机技术发展历程中,Java的身影无处不在,并且拥有旺盛的生命力。Java的跨平台能力十分强大,只需一次编译…...
Vue-Lecture1-Notes
渐进式框架 Vue 被称为“渐进式框架”,是因为它允许开发者根据项目的需求逐步引入和使用其功能,而不需要一次性使用整个框架。简单来说,Vue 提供了从简单到复杂的功能层次,可以灵活选择使用。 按需使用:Vue 的核心功能…...
网上租赁系统开发:SpringBoot实践与应用
第2章 关键技术简介 2.1 Java技术 Java是一种非常常用的编程语言,在全球编程语言排行版上总是前三。在方兴未艾的计算机技术发展历程中,Java的身影无处不在,并且拥有旺盛的生命力。Java的跨平台能力十分强大,只需一次编译…...
User-Agent在WebMagic爬虫中的重要性
对于需要从网站上抓取数据的开发者来说,WebMagic是一个强大的工具。它是一个简单灵活的Java爬虫框架,用于抓取网页数据。在爬虫技术中,User-Agent(用户代理)是一个关键的HTTP请求头,它告诉服务器关于客户端…...
如何解决 Docker 下载 mcr.microsoft.com 镜像慢的办法
一、介绍 MCR(Miscrosoft Container Registry) 加速器,助你在中国大陆急速下载 netcore 相关的 docker 镜像。二、解决办法。 1、如何使用 至少三种方法进行加速: 使用 docker-mcr (推荐) …...
网络编程,端口号,网络字节序,udp
前面一篇我们讲了网络的基础,网络协议栈是什么样的,数据如何流动传输的;接下来这篇,我们将进行实践操作,真正的让数据跨网络进行传输; 1.网络编程储备知识 1.1 初步认识网络编程 首先我们需要知道我们的…...
Android入门
下载Android studio,创建第一个项目 模板可以选择empty views Activity 在这个界面可以修改,使用语言,项目名字,存储路径以及适用版本 完成后,得到一个最初始的Android 项目,红色标记的两个文件…...
二叉树深搜专题篇
目录 计算布尔二叉树的值 求根节点到叶节点数字之和 二叉树剪枝 验证二叉搜索树 二叉搜索树中第K小的元素 二叉树的所有路径 计算布尔二叉树的值 题目 思路 这道题其实是比较简单的,对二叉树来一次后序遍历即可,当遇到叶子结点直接返回叶子节点中…...
堆【数据结构C语言版】【 详解】
目录-笔记整理 一、思考二、堆概念与性质三、堆的构建、删除、添加1. 构建2. 删除3. 添加 四、复杂度分析4.1 时间复杂度4.2 空间复杂度 五、总结 一、思考 设计一种数据结构,来存放整数,要求三个接口: 1)获取序列中的最值&#…...
初识React
在最新写需求的时候,我遇到了一个需求,这个需求改后端改的不算多,而且也比较简单,但是在改前端的时候,很复杂。因为我们这个项目用的是React做前端的,而我对于前端知识没有了解,所以理解很多代码…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
