python格式化输入输出
以下是使用 format()、f-string 和百分号 % 运算符进行 Python 数据格式化输入输出的示例代码。
1. 使用 format() 方法进行格式化
# 使用 format() 方法格式化数据并输出到文件
name = "Alice"
age = 25
score = 92.5# 格式化字符串
formatted_string = "Name: {:<10} Age: {:<5} Score: {:<7.2f}".format(name, age, score)
print(formatted_string) # 输出到控制台# 输出到文件
with open("output_format.txt", "w") as f:f.write(formatted_string)
解释:
{:<10}: 左对齐,占 10 个字符宽度。{:<5}: 左对齐,占 5 个字符宽度。{:<7.2f}: 左对齐,占 7 个字符宽度,浮点数保留 2 位小数。
2. 使用 f-string 进行格式化
# 使用 f-string 格式化数据并输出到文件
name = "Bob"
age = 30
score = 88.75# 格式化字符串
formatted_string = f"Name: {name:<10} Age: {age:<5} Score: {score:<7.2f}"
print(formatted_string) # 输出到控制台# 输出到文件
with open("output_fstring.txt", "w") as f:f.write(formatted_string)
解释:
- f-string 允许直接在字符串中引用变量并使用类似
{变量:格式}的方式进行格式化。 {name:<10}: 左对齐,占 10 个字符宽度。{age:<5}: 左对齐,占 5 个字符宽度。{score:<7.2f}: 左对齐,占 7 个字符宽度,浮点数保留 2 位小数。
3. 使用百分号 % 运算符进行格式化
# 使用 % 运算符格式化数据并输出到文件
name = "Charlie"
age = 22
score = 95.35# 格式化字符串
formatted_string = "Name: %-10s Age: %-5d Score: %-7.2f" % (name, age, score)
print(formatted_string) # 输出到控制台# 输出到文件
with open("output_percent.txt", "w") as f:f.write(formatted_string)
解释:
%s: 字符串占位符。%d: 整数占位符。%f: 浮点数占位符。%-10s: 左对齐,占 10 个字符宽度的字符串。%-5d: 左对齐,占 5 个字符宽度的整数。%-7.2f: 左对齐,占 7 个字符宽度,浮点数保留 2 位小数。
总结:
format()和 f-string 提供了更现代的格式化方式,易读且强大。%运算符是老式的格式化方式,虽然功能较少,但仍然常用于一些代码中。
相关文章:
python格式化输入输出
以下是使用 format()、f-string 和百分号 % 运算符进行 Python 数据格式化输入输出的示例代码。 1. 使用 format() 方法进行格式化 # 使用 format() 方法格式化数据并输出到文件 name "Alice" age 25 score 92.5# 格式化字符串 formatted_string "Name: {…...
音视频入门基础:FLV专题(10)——Script Tag实例分析
一、引言 在《音视频入门基础:FLV专题(9)——Script Tag简介》中对FLV文件的Script Tag进行了简介。下面用一个具体的例子来对Script Tag进行分析。 二、Script Tag的Tag header实例分析 用notepad打开《音视频入门基础:FLV专题…...
国外问卷调查匠哥已经不带人了,但是还可以交流
国外问卷调查匠哥已经不带人了,但是还可以来和匠哥交流, 为啥不带人了呢? 从今年年初开始,匠哥在带学员的过程中发现: 跟往年同样的收费,同样的教学,甚至我付出的时间精力比以前还多ÿ…...
Linux 进程的基本概念及描述
目录 0.前言 1. 什么是进程 1.1 进程的定义与特性 1.2 进程与线程的区别 2.描述进程 2.1 PCB (进程控制块) 2.2 task_struct 3.查看进程 3.1 查看进程信息 3.1.1 /proc 文件系统 3.1.2 ps 命令 3.1.2 top 和 htop 命令 3.2 获取进程标识符 3.2.1使用命令获取PID 3.2.2 使用C语言…...
【C++】透过STL源代码深度剖析vector的底层
✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛) 🌈 个人Motto:他强任他强,清风拂山冈! 🔥 所属专栏:C深入学习笔记 💫 欢迎来到我的学习笔记! 参考博客:【C】透过STL源…...
ubuntu 开启root
sudo passwd root#输入以下命令来给root账户设置密码 sudo passwd -u root#启用root账户 su - root#要登录root账户 root 开启远程访问: 小心不要改到这里了:sudo nano /etc/ssh/ssh_config 而是:/etc/ssh/sshd_config sudo nano /etc/ssh…...
使用 Llama 3.1 和 Qdrant 构建多语言医疗保健聊天机器人的步骤
长话短说: 准备好深入研究: 矢量存储的复杂性以及如何利用 Qdrant 进行高效数据摄取。掌握 Qdrant 中的集合管理以获得最佳性能。释放上下文感知响应的相似性搜索的潜力。精心设计复杂的 LangChain 工作流程以增强聊天机器人的功能。将革命性的 Llama …...
【Linux-基础IO】如何理解Linux下一切皆文件磁盘的介绍
目录 如何理解Linux系统上一切皆文件 1.物理角度认识磁盘 2.对磁盘的存储进行逻辑抽象 磁盘寻址 3.磁盘中的寄存器 如何理解Linux系统上一切皆文件 计算机中包含大量外设,操作系统想要管理好这些外设,就必须对这些外设进行先描述再组织,…...
Golang | Leetcode Golang题解之第436题寻找右区间
题目: 题解: func findRightInterval(intervals [][]int) []int {n : len(intervals)type pair struct{ x, i int }starts : make([]pair, n)ends : make([]pair, n)for i, p : range intervals {starts[i] pair{p[0], i}ends[i] pair{p[1], i}}sort.…...
微服务SpringSession解析部署使用全流程
目录 1、SpringSession简介 2、实现session共享的三种方式 1、修改Tomcat配置文件 2、Nginx负载均衡策略 3、redis统一存储 0、准备工作 1、本地服务添加依赖 2、修改本地服务配置文件 3、添加application.properties文件 4、添加nacos - redis配置 5、修改本地项目…...
自动驾驶 3DGS 学习笔记
目录 street_gaussians gsplat依赖项 运行报错: python>3.9 SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior 差分高斯光栅化 diff-gaussian-rasterization street_gaussians https://github.com/zju3dv/street_gaussians gsp…...
【C++笔试强训】如何成为算法糕手Day5
学习编程就得循环渐进,扎实基础,勿在浮沙筑高台 循环渐进Forward-CSDN博客 目录 循环渐进Forward-CSDN博客 第一题:游游的you 思路: 第二题:腐烂的苹果 思路: 第三题:孩子们的游戏 思路&…...
【Qt】无IDE的Gui程序快速开始
Qt安装 在 Windows 上安装 Qt 的步骤如下: 下载 Qt 安装程序 访问 Qt 的官方网站:Qt Downloads。点击“Download”按钮,下载 Qt Online Installer(在线安装程序)。 运行安装程序 双击下载的 QtInstaller.exe 文件…...
Python编码系列—Python备忘录模式:掌握对象状态保存与恢复技术
🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...
linux常用命令汇编(持续更新)
一、用户提示符 # root账号提示符 $ 普通用户提示符 二、关闭计算机 shutdown(安全有序地关闭计算机) 语法:shutdown [options] [time] [message] shutdown -h now #立即关机(--halt/终止) shutdown -r now #重…...
AI面试指南:AI工具总结评测,助力求职季
AI面试指南:AI工具总结评测,助力求职季 摘要: 在竞争激烈的AI领域秋招季,准备充分并借助高效工具是提升面试通过率的关键。本文主要介绍一些针对秋招的AI面试工具和学习资源,分为简历优化、面试助手、手撕代码练习三个…...
大二考核题解
大二考核题解 题号题目考察知识点A有意思的监考二分答案B海绵宝宝的数独DFSC走楼梯递推D碱基配对kmpE好简单的题啊,写它!最短路 写在前面: 整体难度不大,代码能力需要一些,正常来说至少要会3题以上 A 有意思的监考 …...
深入解析:Kubernetes 如何使用 etcd 作为配置中心和注册中心
在 Kubernetes 中,etcd 是核心的分布式存储组件,负责存储和管理集群的所有配置信息、状态数据以及服务注册信息。etcd 的高可用性和强一致性使得它成为 Kubernetes 的 “source of truth”,确保集群能够动态、高效地管理资源,并保…...
MQ高级:RabbitMQ小细节
在之前的学习中,我们只介绍了消息的发送,但是没有考虑到异常的情况,今天我们就介绍一些异常情况,和细节的部分。 目录 生产者可靠性 生产者重连 生产者确认 MQ可靠性 持久化 Lazy Queue 消费者可靠性 消费者确认机制 失…...
期权卖方怎么选择权利金高的品种,期货VIX高低对行情有什么影响
VIX指数——全称为芝加哥期权交易所市场波动率指数,俗称恐慌指数。 是衡量波动性的重要指标。VIX指数上升,预期未来市场波动性会增加。VIX指数下降,预期未来市场波动性会降低。 期货VIX指数最新价格排序 期权卖方尽量选择期货VIX指数在25以…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
node.js的初步学习
那什么是node.js呢? 和JavaScript又是什么关系呢? node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说, 需要在node.js的环境上进行当JavaScript作为前端开发语言来说,需要在浏览器的环境上进行 Node.js 可…...
Python的__call__ 方法
在 Python 中,__call__ 是一个特殊的魔术方法(magic method),它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时(例如 obj()),Python 会自动调用该对象的 __call__ 方法…...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
性能优化中,多面体模型基本原理
1)多面体编译技术是一种基于多面体模型的程序分析和优化技术,它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象,通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中࿰…...
