基于yolov8深度学习的120种犬类检测与识别系统python源码+onnx模型+评估指标曲线+精美GUI界面目标检测狗类检测犬类识别系统
【算法介绍】
基于YOLOv8深度学习的120种犬类检测与识别系统是一款功能强大的工具,该系统利用YOLOv8深度学习框架,通过21583张图片的训练,实现了对120种犬类的精准检测与识别。
该系统基于Python与PyQt5开发,具有简洁的UI界面,支持图片、视频以及摄像头三种方式进行目标检测,并能够将检测结果进行保存。在检测过程中,系统能够实时显示目标位置、目标总数、置信度以及用时等信息,为用户提供直观、清晰的检测结果。
该系统在多个领域具有广泛的应用价值。在公共安全领域,警方和安保人员可以利用它快速识别搜救犬、警犬以及潜在的威胁性狗类,提高工作效率和响应速度。在宠物行业,它有助于宠物店、兽医诊所和动物收容所更准确地记录和管理犬只信息,提供更个性化的服务。此外,它还可以用于城市管理中监控流浪狗的数量和分布,处理公共卫生问题和安全风险,以及牧场和农场中牧羊犬的精准管理等。
总之,基于YOLOv8深度学习的120种犬类检测与识别系统是一款高效、准确、易用的工具,它的出现将极大地推动犬类检测与识别技术的发展,为多个领域带来便利和价值。
【效果展示】


【测试环境】
windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.2.95
【模型可以检测出类别】
affenpinscher
afghan_hound
african_hunting_dog
airedale
american_staffordshire_terrier
appenzeller
australian_terrier
basenji
basset
beagle
bedlington_terrier
bernese_mountain_dog
black-and-tan_coonhound
blenheim_spaniel
bloodhound
bluetick
border_collie
border_terrier
borzoi
boston_bull
bouvier_des_flandres
boxer
brabancon_griffon
briard
brittany_spaniel
bull_mastiff
cairn
cardigan
chesapeake_bay_retriever
chihuahua
chow
clumber
cocker_spaniel
collie
curly-coated_retriever
dandie_dinmont
dhole
dingo
doberman
english_foxhound
english_setter
english_springer
entlebucher
eskimo_dog
flat-coated_retriever
french_bulldog
german_shepherd
german_short-haired_pointer
giant_schnauzer
golden_retriever
gordon_setter
great_dane
great_pyrenees
greater_swiss_mountain_dog
groenendael
ibizan_hound
irish_setter
irish_terrier
irish_water_spaniel
irish_wolfhound
italian_greyhound
japanese_spaniel
keeshond
kelpie
kerry_blue_terrier
komondor
kuvasz
labrador_retriever
lakeland_terrier
leonberg
lhasa
malamute
malinois
maltese_dog
mexican_hairless
miniature_pinscher
miniature_poodle
miniature_schnauzer
newfoundland
norfolk_terrier
norwegian_elkhound
norwich_terrier
old_english_sheepdog
otterhound
papillon
pekinese
pembroke
pomeranian
pug
redbone
rhodesian_ridgeback
rottweiler
saint_bernard
saluki
samoyed
schipperke
scotch_terrier
scottish_deerhound
sealyham_terrier
shetland_sheepdog
shih-tzu
siberian_husky
silky_terrier
soft-coated_wheaten_terrier
staffordshire_bullterrier
standard_poodle
standard_schnauzer
sussex_spaniel
tibetan_mastiff
tibetan_terrier
toy_poodle
toy_terrier
vizsla
walker_hound
weimaraner
welsh_springer_spaniel
west_highland_white_terrier
whippet
wire-haired_fox_terrier
yorkshire_terrier
【训练信息】
| 参数 | 值 |
| 训练集图片数 | 18945 |
| 验证集图片数 | 1738 |
| 训练map | 73.5% |
| 训练精度(Precision) | 69.8% |
| 训练召回率(Recall) | 67.9% |
【部分实现源码】
class Ui_MainWindow(QtWidgets.QMainWindow):signal = QtCore.pyqtSignal(str, str)def setupUi(self):self.setObjectName("MainWindow")self.resize(1280, 728)self.centralwidget = QtWidgets.QWidget(self)self.centralwidget.setObjectName("centralwidget")self.weights_dir = './weights'self.picture = QtWidgets.QLabel(self.centralwidget)self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))self.picture.setStyleSheet("background:black")self.picture.setObjectName("picture")self.picture.setScaledContents(True)self.label_2 = QtWidgets.QLabel(self.centralwidget)self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))self.label_2.setObjectName("label_2")self.cb_weights = QtWidgets.QComboBox(self.centralwidget)self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))self.cb_weights.setObjectName("cb_weights")self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)self.label_3 = QtWidgets.QLabel(self.centralwidget)self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))self.label_3.setObjectName("label_3")self.hs_conf = QtWidgets.QSlider(self.centralwidget)self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))self.hs_conf.setProperty("value", 25)self.hs_conf.setOrientation(QtCore.Qt.Horizontal)self.hs_conf.setObjectName("hs_conf")self.hs_conf.valueChanged.connect(self.conf_change)self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))self.dsb_conf.setMaximum(1.0)self.dsb_conf.setSingleStep(0.01)self.dsb_conf.setProperty("value", 0.25)self.dsb_conf.setObjectName("dsb_conf")self.dsb_conf.valueChanged.connect(self.dsb_conf_change)self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))self.dsb_iou.setMaximum(1.0)self.dsb_iou.setSingleStep(0.01)self.dsb_iou.setProperty("value", 0.45)self.dsb_iou.setObjectName("dsb_iou")self.dsb_iou.valueChanged.connect(self.dsb_iou_change)self.hs_iou = QtWidgets.QSlider(self.centralwidget)self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))self.hs_iou.setProperty("value", 45)self.hs_iou.setOrientation(QtCore.Qt.Horizontal)self.hs_iou.setObjectName("hs_iou")self.hs_iou.valueChanged.connect(self.iou_change)self.label_4 = QtWidgets.QLabel(self.centralwidget)self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))self.label_4.setObjectName("label_4")self.label_5 = QtWidgets.QLabel(self.centralwidget)self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))self.label_5.setObjectName("label_5")self.le_res = QtWidgets.QTextEdit(self.centralwidget)self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))self.le_res.setObjectName("le_res")self.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(self)self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))self.menubar.setObjectName("menubar")self.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(self)self.statusbar.setObjectName("statusbar")self.setStatusBar(self.statusbar)self.toolBar = QtWidgets.QToolBar(self)self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)self.toolBar.setObjectName("toolBar")self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)self.actionopenpic = QtWidgets.QAction(self)icon = QtGui.QIcon()icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionopenpic.setIcon(icon)self.actionopenpic.setObjectName("actionopenpic")self.actionopenpic.triggered.connect(self.open_image)self.action = QtWidgets.QAction(self)icon1 = QtGui.QIcon()icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action.setIcon(icon1)self.action.setObjectName("action")self.action.triggered.connect(self.open_video)self.action_2 = QtWidgets.QAction(self)icon2 = QtGui.QIcon()icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action_2.setIcon(icon2)self.action_2.setObjectName("action_2")self.action_2.triggered.connect(self.open_camera)self.actionexit = QtWidgets.QAction(self)icon3 = QtGui.QIcon()icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionexit.setIcon(icon3)self.actionexit.setObjectName("actionexit")self.actionexit.triggered.connect(self.exit)self.toolBar.addAction(self.actionopenpic)self.toolBar.addAction(self.action)self.toolBar.addAction(self.action_2)self.toolBar.addAction(self.actionexit)self.retranslateUi()QtCore.QMetaObject.connectSlotsByName(self)self.init_all()
【使用步骤】
使用步骤:
(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可
【提供文件】
python源码
yolov8s.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)
【源码下载地址】
https://download.csdn.net/download/FL1623863129/89831387
相关文章:
基于yolov8深度学习的120种犬类检测与识别系统python源码+onnx模型+评估指标曲线+精美GUI界面目标检测狗类检测犬类识别系统
【算法介绍】 基于YOLOv8深度学习的120种犬类检测与识别系统是一款功能强大的工具,该系统利用YOLOv8深度学习框架,通过21583张图片的训练,实现了对120种犬类的精准检测与识别。 该系统基于Python与PyQt5开发,具有简洁的UI界面&a…...
UNI-APP_iOS开发技巧之:跳转到TestFlight或者App Store
有的时候我们的应用可能需要上TestFlight或者App Store,更新升级就需要跳到TestFlight里面。方法如下: 跳转到TestFlight: itms-beta://itunes.apple.com/app/你的AppID 跳转到AppStore: itms-apps://itunes.apple.com/app/你的AppIDhttps://airp…...
基于SSM+Vue技术的定制式音乐资讯平台
文未可获取一份本项目的java源码和数据库参考。 一、选题的背景与意义: 随着个人计算机的普及和互联网技术的日渐成熟,网络正逐渐成为人们获取信息及消费的主要渠道。然而在当前这个信息时代,网络中的信息种类和数量呈现爆炸性增长的趋势&a…...
Spring依赖注入和注解驱动详解和案例示范
在 Spring 框架中,依赖注入(Dependency Injection, DI)和注解驱动(Annotation-Driven)是其核心机制,它们为 Spring 应用提供了灵活性和可扩展性。依赖注入简化了对象间的依赖管理,而注解驱动则通…...
网络通信——OSPF协议(基础篇)
这里基础是因为没有讲解OSPF中的具体算法过程,以及其中很多小细节。后续会更新。 目录 一.OSPF的基础信息 二.认识OSPF中的Router ID 三.OSPF中的三张表 四.OSPF中的度量方法(计算开销值) 五. OSPF选举DR和BDR(就是这个区域…...
Kubernetes从零到精通(15-安全)
目录 一、Kubernetes API访问控制 1.传输安全(Transport Security) 2.认证(Authentication) 2.1 认证方式 2.2 ServiceAccount和普通用户的区别 2.3 ServiceAccount管理方式 自动ServiceAccount示例 手动ServiceAccount示例 3.鉴权 (Authorization) 3.1鉴权方式 3.2 …...
《蓝桥杯算法入门》(C/C++、Java、Python三个版本)24年10月出版
推荐:《算法竞赛》,算法竞赛大全书,网购:京东 天猫 当当 文章目录 《蓝桥杯算法入门》内容简介本书读者对象作者简介联系与交流《蓝桥杯算法入门 C/C》版目录 《蓝桥杯算法入门 Java》版目录 《蓝桥杯算法入门 Python》版目录 …...
Soar项目中添加一条新的SQL审核规则示例
soar是一个开源的SQL规则审核工具,是一个go语言项目,可以直接编译构建成一个可执行程序,而且是一个命令行工具,我们可以利用archey来调用soar进行sql规则审核以及sql的分析,包括执行计划的查看及sql建议等。 soar中已…...
RISC-V开发 linux下GCC编译自定义指令流程笔记
第一步:利用GCC提供了内嵌汇编的功能可以在C代码中直接内嵌汇编语言 第二步:利用RSIC-V的中的.insn模板进行自定义指令的插入 第三步:RISC-V开发环境的搭建 C语言插入汇编 GCC提供了内嵌汇编的功能可以在C代码中直接内嵌汇编语言语句方便了…...
java代码是如何与数据库通信的?
Java代码与数据库通信的过程主要通过Java Database Connectivity(JDBC)来实现。JDBC是Java与数据库之间的标准接口,提供了用于执行SQL语句和处理数据库结果的API。以下是Java代码与数据库通信的详细步骤: 一、导入JDBC库 在Java…...
gateway--网关
在微服务架构中,Gateway(网关)是一个至关重要的组件,它扮演着多种关键角色,包括路由、负载均衡、安全控制、监控和日志记录等。 Gateway网关的作用 统一访问入口: Gateway作为微服务的统一入口,…...
北京数字孪生工业互联网可视化技术,赋能新型工业化智能制造工厂
随着北京数字孪生工业互联网可视化技术的深入应用,新型工业化智能制造工厂正逐步迈向智能化、高效化的全新阶段。这项技术不仅实现了物理工厂与数字世界的精准映射,更通过大数据分析、人工智能算法等先进手段,为生产流程优化、资源配置合理化…...
土地规划与区域经济发展:筑基均衡未来的战略经纬
在新时代背景下,土地规划不仅是空间布局的艺术,更是推动区域经济均衡发展的关键引擎。土地资源的合理配置对于激发区域潜能、促进经济结构优化有着重要意义。本文将深入剖析土地规划如何成为促进区域经济均衡发展的强大动力。 一、土地规划与区域经济的…...
wsl(2) -- ubuntu24.04配置
1. 常用脚本及别名配置 修改的文件内容参考另一篇文章常用bash脚本。 修改~/.bashrc,在文件末尾追加以下内容。 # Add by user export MYTOOLS$HOME/tools export MYBINS$HOME/bin # 系统中其他地方已经添加过了,暂不清楚是哪里添加的 #export PATH$M…...
python快速搭建https服务器
本文介绍了在ubuntu操作系统上搭建https服务器的过程 在一台连接到网络的主机上搭建https服务器,假设该主机的ip地址为:10.98.69.174 创建证书example.crt和私钥example.key openssl req -newkey rsa:2048 -nodes -keyout example.key -x509 -days 365…...
网络原理3-应用层(HTTP/HTTPS)
目录 DNSHTTP/HTTPSHTTP协议报文HTTP的方法请求报头、响应报头(header)状态码构造HTTP请求HTTPS 应用层是我们日常开发中最常用的一层,因为其他层:传输层、网络层、数据链路层、物理层这些都是操作系统和硬件、驱动已经实现好的,我们只能使用…...
JVM(HotSpot):堆空间(Heap)以及常用相关工具介绍
文章目录 一、内存结构图二、堆的定义三、堆内存溢出四、堆内存排查工具 一、内存结构图 二、堆的定义 1、通过new关键字创建的对象,都会放到堆空间中。 2、它是线程共享的,堆中的对象都要考虑线程安全问题。 那有同学肯定会问,方法内通过n…...
【Python语言初识(六)】
一、网络编程入门 1.1、TCP/IP模型 实现网络通信的基础是网络通信协议,这些协议通常是由互联网工程任务组 (IETF)制定的。所谓“协议”就是通信计算机双方必须共同遵从的一组约定,例如怎样建立连接、怎样互相识别等,…...
使用root账号ssh登录虚拟机ubuntu
在C:\Users\Administrator\.ssh目录下的config中,添加ubuntu会在根目录中,建立一个root文件夹。在该文件夹中建一个.ssh目录。像免密登录ubuntu设置中,把公钥考进去。在vscode中打开文件夹中选择要打开的文件夹,就可以不需要在ubu…...
五子棋双人对战项目(1)——WebSocket介绍
目录 一、项目介绍 如何实现实时同步对局? 二、WebSocket 1、什么是WebSocket? 2、WebSocket的报文格式 opcode payload len payload data 3、WebSocket握手过程 4、WebSocket代码的简单编写 三、WebSocket 和 HTTP的关系 1、相同点…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
SQL进阶之旅 Day 22:批处理与游标优化
【SQL进阶之旅 Day 22】批处理与游标优化 文章简述(300字左右) 在数据库开发中,面对大量数据的处理任务时,单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”,深入探讨如何通过批量操作和游标技术提…...
IP选择注意事项
IP选择注意事项 MTP、FTP、EFUSE、EMEMORY选择时,需要考虑以下参数,然后确定后选择IP。 容量工作电压范围温度范围擦除、烧写速度/耗时读取所有bit的时间待机功耗擦写、烧写功耗面积所需要的mask layer...
C++参数传递 a与a的区别
在 C 中,&a(引用)和 a(值传递) 的关键区别在于 参数如何传递给函数,以及由此引发的 性能、语义和安全问题。 最核心的在于你想不想传入的参数被改变,如果想,就用参数传递&#…...
< 自用文 OS有关 新的JD云主机> 国内 京东云主机 2C4G 60G 5Mb 498/36月 Ubuntu22
攒了这么久,废话一些: 前几周很多事儿,打算回北京,开个清真的德克萨斯烤肉店,写了一篇 : < 自用文 Texas style Smoker > 美式德克萨斯烟熏炉 从设计到实现 (第一部分&…...
