当前位置: 首页 > news >正文

cGANs with Projection Discriminator

基于映射鉴别器的CGAN

模型中,判别器(Discriminator)不是通过将条件信息简单地与特征向量拼接(concatenate)来使用条件信息,而是采用一种基于投影的方式,这种方式更加尊重条件信息在底层概率模型中的作用。
判别器的构建是受到概率模型假设的启发,其中条件变量 y 给定 x 的分布是离散的或单峰连续分布。这种模型假设在许多实际应用中很常见,包括类条件图像生成和超分辨率。通过这种假设,可以形成一个需要在嵌入的条件向量 y 和特征向量之间进行内积的判别器结构。
在这里插入图片描述

代码实现

class DiscriminatorPCGAN(nn.Module):def __init__(self, x_dim, c_dim, dim=96, norm='none', weight_norm='spectral_norm'):super(DiscriminatorPCGAN, self).__init__()norm_fn = _get_norm_fn_2d(norm)weight_norm_fn = _get_weight_norm_fn(weight_norm)def conv_norm_lrelu(in_dim, out_dim, kernel_size=3, stride=1, padding=1):return nn.Sequential(weight_norm_fn(nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding)),norm_fn(out_dim),nn.LeakyReLU(0.2))self.ls = nn.Sequential(  # (N, x_dim, 32, 32)conv_norm_lrelu(x_dim, dim),conv_norm_lrelu(dim, dim),conv_norm_lrelu(dim, dim, stride=2),  # (N, dim , 16, 16)conv_norm_lrelu(dim, dim * 2),conv_norm_lrelu(dim * 2, dim * 2),conv_norm_lrelu(dim * 2, dim * 2, stride=2),  # (N, dim*2, 8, 8)conv_norm_lrelu(dim * 2, dim * 2, kernel_size=3, stride=1, padding=0),conv_norm_lrelu(dim * 2, dim * 2, kernel_size=1, stride=1, padding=0),conv_norm_lrelu(dim * 2, dim * 2, kernel_size=1, stride=1, padding=0),  # (N, dim*2, 6, 6)nn.AvgPool2d(kernel_size=6),  # (N, dim*2, 1, 1)torchlib.Reshape(-1, dim * 2),  # (N, dim*2))self.l_logit = weight_norm_fn(nn.Linear(dim * 2, 1))  # (N, 1)self.l_projection = weight_norm_fn(nn.Linear(dim * 2, c_dim))  # (N, c_dim)def forward(self, x, c):# x: (N, x_dim, 32, 32), c: (N, c_dim)feat = self.ls(x)logit = self.l_logit(feat)# 做一个线性编码embed = (self.l_projection(feat) * c).mean(1, keepdim=True)logit += embedreturn logit

CGAN参考文章

相关文章:

cGANs with Projection Discriminator

基于映射鉴别器的CGAN 模型中,判别器(Discriminator)不是通过将条件信息简单地与特征向量拼接(concatenate)来使用条件信息,而是采用一种基于投影的方式,这种方式更加尊重条件信息在底层概率模…...

mysql学习教程,从入门到精通,SQL HAVING 子句(32)

1、SQL HAVING 子句 当然!HAVING 子句在 SQL 中用于对分组后的结果进行过滤。它通常与 GROUP BY 子句一起使用,以便对聚合函数(如 SUM(), COUNT(), AVG(), MAX(), MIN() 等)的结果进行条件筛选。 以下是一个示例,假设…...

JavaScript while循环语句

While语句包括一个循环条件和一段代码块&#xff0c;只要条件为真&#xff0c;就不断循环执行代码块。 while(条件){语句;} var i0;while(i<100){console.log(i);i1;} 注意&#xff1a;所有的for循环都可以改写为while循环...

49天精通Java(Day 2):Java的基本语法

上期内容回顾 在上一期的内容中&#xff0c;我们介绍了Java的基本概念、历史背景&#xff0c;并完成了JDK 1.8的安装与环境配置。你还编写并运行了第一个简单的Java程序“Hello, World!”。今天&#xff0c;我们将深入探讨Java的基本语法&#xff0c;包括变量、数据类型、运算…...

uni-app之旅-day01-home页

首页 3.0 创建 home 分支 &#x1f355;&#x1f355;&#x1f355;运行如下的命令&#xff0c;基于 master 分支在本地创建 home 子分支&#xff0c;用来开发和 home 首页相关的功能git branch(查看分支)git checkout -b home(创建home分支) 3.1 配置网络请求 &#x1f32…...

Vue3轻松实现导出Excel文件功能

文章目录 1.前言2.安装插件3.案例3.1 定义表格数据,设置 id 选择器3.2 据所选 dom 对象生成 sheetbook3.3 写入文件3.4 生成 xlsx文件4.完整代码1.前言 前端常用的导出 Excel的 js 库是 xlsx,但是 xlsx不能设置样式。要想设置样式,必要要结合 xlsx-style 插件一起使用,但是…...

在Kali Linux中使用VNC和iptables配置xrdp以实现远程连接

在Kali Linux中&#xff0c;使用VNC和iptables配置xrdp以实现远程连接涉及几个步骤。不过&#xff0c;值得注意的是&#xff0c;VNC和xrdp是两种不同的远程桌面协议&#xff0c;它们通常不会在同一配置中同时使用&#xff08;除非有特殊的网络架构需求&#xff09;。然而&#…...

小徐影院:Spring Boot技术下的影院革新

第四章 系统设计 4.1 系统的功能结构图 通过系统需求分析&#xff0c;本小徐影城管理系统的功能结构设计如图4-1所示&#xff1a; 图4-1 系统功能图 4.2 系统数据库设计 4.2.1 数据库E-R图 在该系统的信息中&#xff0c;由于数据库的支持&#xff0c;我们可以对数据库进行收集…...

命名空间

在 C 中&#xff0c;变量、函数和类都是大量存在的&#xff0c;这些变量、函数和类的名称将都存在于全局作用域中&#xff0c;可能会导致很多冲突&#xff0c;使用命名空间的目的是对标识符的名称进行本地化&#xff0c;以避免命名冲突或名字污染&#xff0c;namespace 关键字的…...

使用 Elastic 将 AI 摘要添加到你的网站

作者&#xff1a;来自 Elastic Gustavo Llermaly 我们目前所知道的搜索&#xff08;搜索栏、结果、过滤器、页面等&#xff09;已经取得了长足的进步&#xff0c;并实现了多种不同的功能。当我们知道找到所需内容所需的关键字或知道哪些文档包含我们想要的信息时&#xff0c;尤…...

dOOv:Java 数据验证与映射库(简化业务逻辑)

dOOv 是一个为 Java 开发人员设计的轻量化库&#xff0c;专注于数据验证和对象间的映射。与传统的验证框架不同&#xff0c;dOOv 通过提供简洁、声明式的 API&#xff0c;使得开发者可以轻松地编写、扩展和维护验证和映射规则。其设计灵感源自领域驱动设计&#xff08;DDD&…...

Arthas sc(查看JVM已加载的类信息 )

文章目录 二、命令列表2.2 class/classloader相关命令2.2.5 sc&#xff08;查看JVM已加载的类信息 &#xff09;举例1&#xff1a;模糊搜索&#xff0c;xx包下所有的类举例2&#xff1a;打印类的详细信息举例3&#xff1a;打印出类的Field信息 本人其他相关文章链接 二、命令列…...

OCR 行驶证识别 离线识别

目录 正页识别 副页识别 全部识别 OCR 行驶证识别 离线识别 正页识别 副页识别 全部识别...

PHP泛目录生成源码,可生成长尾关键词页面,带使用方法视频教程

介绍&#xff1a; 真正的好东西&#xff0c;搞网站优化seo从业必备。可以快速提升网站权重&#xff0c;带来的流量哗哗的 PHP泛目录生成源码 可生成新闻页面和关键词页面 带使用方法视频教程 泛目录可以用来提升网站收录和排名 合理运用目录可以达到快速出词和出权重的效果…...

LeetCode题练习与总结:丑数--263

一、题目描述 丑数 就是只包含质因数 2、3 和 5 的正整数。 给你一个整数 n &#xff0c;请你判断 n 是否为 丑数 。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;n 6 输出&#xff1a;true 解释&#xff1…...

初识C语言(五)

前言 本文章就代表C语言介绍以及了解正式完成&#xff0c;后续进行具体分析和详细解析学习。知识根深蒂固才可以应付后来的学习&#xff0c;地基要打好&#xff0c;后续才会轻松。 十四、结构体 结构体是C语言中最最重要的知识点&#xff0c;使得C语言有能力描述复杂的类型。 …...

Linux:深入理解冯诺依曼结构与操作系统

目录 1. 冯诺依曼体系结构 1.1 结构分析 1.2 存储结构分布图 2. 操作系统 2.1 概念 2.2 如何管理 2.3 什么是系统调用和库函数 1. 冯诺依曼体系结构 1.1 结构分析 不管是何种计算机&#xff0c;如个人笔记本电脑&#xff0c;服务器&#xff0c;都是遵循冯诺依曼结构。…...

面试中顺序表常考的十大题目解析

在数据结构与算法的面试中&#xff0c;顺序表是一个常见的考点。它作为一种基础的数据结构&#xff0c;涵盖了多种操作和概念&#xff0c;以下将详细介绍面试中关于顺序表常考的十大题目。 &#x1f49d;&#x1f49d;&#x1f49d;如果你对顺序表的概念与理解还存在疑惑&#…...

测试管理新增视图与高级搜索功能,测试计划支持一键生成缺陷详情,MeterSphere开源持续测试工具v3.3版本发布

2024年9月29日&#xff0c;MeterSphere开源持续测试工具正式发布v3.3版本。 在这一版本中&#xff0c;接口测试方面&#xff0c;接口导入功能支持导入Postman、JMX、HAR和MeterSphere格式的文件&#xff0c;接口场景的自定义请求步骤支持cURL快捷导入&#xff1b;测试管理方面…...

TypeScript 算法手册 【归并排序】

文章目录 1. 归并排序简介1.1 归并排序定义1.2 归并排序特点 2. 归并排序步骤过程拆解2.1 分割数组2.2 递归排序2.3 合并有序数组 3. 归并排序的优化3.1 原地归并排序3.2 混合插入排序案例代码和动态图 4. 归并排序的优点5. 归并排序的缺点总结 【 已更新完 TypeScript 设计模式…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...