matlab-对比两张图片的HSV分量的差值并形成直方图
%对比两张图片的HSV分量的差值并形成直方图,改个路径就能用,图片分辨率要一致
close all;
clear all;
clc;
I1=imread('E:\test\resources\image\1.jpg');
I2=imread('E:\test\resources\image\2.jpg');
HSV1 = rgb2ntsc(I1);
HSV2 = rgb2ntsc(I2);
%HSV,HSV 代表色相(Hue)、饱和度(Saturation)和亮度(Value),它提供了一种直观的方式来描述颜色的不同方面。
H1=HSV1(:, :, 1);
S1=HSV1(:, :, 2);
V1=HSV1(:, :, 3);
H2=HSV2(:,:,1);
S2=HSV2(:,:,2);
V2=HSV2(:,:,3);
%显示彩色图像
figure;
subplot(141);%拿subplot(221)来说,就是一个2*2的矩阵画布,1代表图片处于第一个位置:
imshow(I1);
%R分量灰度图
subplot(142);imshow(H1);
%G分量灰度图
subplot(143);imshow(S1);
%B分量灰度图
subplot(144);imshow(V1);
figure;
subplot(141);%拿subplot(221)来说,就是一个2*2的矩阵画布,1代表图片处于第一个位置:
imshow(I2);
%R分量灰度图
subplot(142);imshow(H2);
%G分量灰度图
subplot(143);imshow(S2);
%B分量灰度图
subplot(144);imshow(V2);
H_fault=abs(H1-H2);
S_fault=abs(S1-S2);
V_fault=abs(V1-V2);
figure;
%显示红色分辨率下的直方图
subplot(131);
imhist(H1);
%显示红色分辨率下的直方图
subplot(132);
imhist(S1);
%显示红色分辨率下的直方图
subplot(133);
imhist(V1);
figure;
%显示红色分辨率下的直方图
subplot(131);
imhist(H2);
%显示红色分辨率下的直方图
subplot(132);
imhist(S2);
%显示红色分辨率下的直方图
subplot(133);
imhist(V2);
figure;
%显示红色分辨率下的直方图
subplot(131);
imhist(H_fault);
%显示红色分辨率下的直方图
subplot(132);
imhist(S_fault);
%显示红色分辨率下的直方图
subplot(133);
imhist(V_fault);
相关文章:
matlab-对比两张图片的HSV分量的差值并形成直方图
%对比两张图片的HSV分量的差值并形成直方图,改个路径就能用,图片分辨率要一致 close all; clear all; clc; I1imread(E:\test\resources\image\1.jpg); I2imread(E:\test\resources\image\2.jpg); HSV1 rgb2ntsc(I1); HSV2 rgb2ntsc(I2); %HSV,HSV 代…...

微服务SpringGateway解析部署使用全流程
官网地址: Spring Cloud Gateway 目录 1、SpringGateway简介 1、什么是网关 2、为什么用网关【为了转发】 2、应用: 1.启动nacos 2.创建网关项目 3.网关配置1 4.网关配置2【了解】 5.过滤器配置【了解】 1、SpringGateway简介 核心功能有三个&…...

Solidity 存储和内存管理:深入理解与高效优化
在 Solidity 中,存储和内存管理是编写高效智能合约的关键组成部分。合约执行的每一步操作都可能涉及到数据的存储和读取,而这些操作对 gas 的消耗有很大影响。因此,理解 Solidity 的存储模型以及如何优化数据的管理对于合约的安全性、性能和成…...

机器学习篇-day02-KNN算法实现鸢尾花模型和手写数字识别模型
一. KNN简介 KNN思想 K-近邻算法(K Nearest Neighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别 KNN算法思想:如果一个样本在特征空间中的k 个最相似的样本中的大多数属于某一个类别,则该样本也属…...

【C++】STL--vector
1.vector的介绍 我们先来看看vector的文档介绍,实际中我们只要熟悉相关接口就好了。 成员函数 使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习 2 vector的使用 v…...
Java使用Redis的详细教程
Redis是一个基于内存的key-value结构数据库,即非关系型数据库,具有高性能、丰富的数据类型、持久化、高可用性和分布式等特点。在Java项目中,Redis通常用于缓存、分布式锁、计数器、消息队列和排行榜等场景。以下是在Java中使用Redis的详细教…...

严重 Zimbra RCE 漏洞遭大规模利用(CVE-2024-45519)
攻击者正在积极利用 CVE-2024-45519,这是一个严重的 Zimbra 漏洞,该漏洞允许他们在易受攻击的安装上执行任意命令。 Proofpoint 的威胁研究人员表示,攻击始于 9 月 28 日,几周前,Zimbra 开发人员发布了针对 CVE-2024-…...
php函数积累
对称函数 isset 判断数组arr中是否存在键key 返回值true/false isset(name,$arr) unset 删除数组中的键 需存在key不然抛出异常 unset($arr[name]) json_encode 数据转json格式 json_encode($arr) 一般形式 指定字符编码形式 json_decode json格式转原有数据格式 json_d…...
前端项目场景相关的面试题,包含验证码、图片存储、登录鉴权、动态路由、组件划分等项目场景实际的面试题
项目场景面试题 如何防止短信验证码被刷 问题场景 添加倒计时和图片滑动验证,避免不必要的资源浪费 发送短信验证码需要费用发送短信消耗服务器资源 公司的图片、视频、文件资源如何存储的 传统模式 分开存储到数据服务器,托管服务器到云端 缺点&…...

uniapp 上了原生的 echarts 图表插件了 兼容性还行
插件地址:echarts - DCloud 插件市场 兼容性这块儿不知道后期会不会支持其他浏览器 H5 的话建议可以用原生的不用这个插件...

共享单车轨迹数据分析:以厦门市共享单车数据为例(八)
副标题:基于POI数据的站点综合评价——以厦门市为例(三) 什么是优劣解距离法(TOPSIS)? 优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,简称TOPSI…...

sentinel原理源码分析系列(二)-动态规则和transport
本文是sentinel原理源码分析系列第二篇,分析两个组件,动态配置和transport 动态规则 Sentinel提供动态规则机制,依赖配置中心,如nacos,zookeeper,组件支持动态配置,模板类型为规则,支…...

ubuntu切换源方式记录(清华源、中科大源、阿里源)
文章目录 前言一、中科大源二、清华源三、阿里源 前言 记录ubunut切换各个源的方式。 备注:更换源之后使用sudo apt-get update更新索引。 提示:以下是本篇文章正文内容,下面案例可供参考 一、中科大源 地址:https://mirrors.u…...

【10】纯血鸿蒙HarmonyOS NEXT星河版开发0基础学习笔记-泛型基础全解(泛型函数、泛型接口、泛型类)及参数、接口补充
序言: 本文详细讲解了关于ArkTs语言中的泛型,其中包含泛型函数、泛型接口、泛型约束、泛型类及其中参数的使用方法,补充了一部分接口相关的知识,包括接口的继承和具体实现,也写到了一些边边角角的小知识,剩…...
2024年09月CCF-GESP编程能力等级认证C++编程一级真题解析
本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 据有关资料,山东大学于1972年研制成功DJL-1计算机,并于1973年投入运行,其综合性能居当时全国第三位。DJL-1计算机运算控制…...

基于多维统计分析与GMM聚类的食品营养特征研究
1.项目背景 在当今社会,随着人们对健康和营养的日益关注,深入了解食品的营养成分及其对人体的影响变得越来越重要,本研究采用了多维度的分析方法,包括营养成分比较分析、统计检验、营养密度分析和高斯混合模型(GMM&am…...
SkyWalking 告警功能
SkyWalking 告警功能是在 6.x 版本新增的,其核心由一组规则驱动,这些规则定义在config/alarm-settings.yml文件中。 告警规则 告警规则:它们定义了应该如何触发度量警报,应该考虑什么条件。Webhook(网络钩子):定义当警告触发时,哪些服务终端需要被告知。常用告警规则 …...

国内旅游:现状与未来趋势分析
在当今社会快速发展的背景下,国内旅游更是呈现出蓬勃的发展态势。中国,这片拥有悠久历史、灿烂文化和壮丽山河的广袤土地,为国内旅游的兴起与发展提供了得天独厚的条件。 本报告将借助 DataEase 强大的数据可视化分析能力,深入剖…...

西电25考研 VS 24考研专业课大纲变动汇总
01专业课变动 西安电子科技大学专业课学长看到953网络安全基础综合变为 893网络安全基础综合,这是因为工科要求都必须是8开头的专业课,里面参考课本还是没变的,无非就是变了一个名字 对于其他变动专业课也是同理的 02专业课考纲内容变化 对于…...

【Linux】进程管理:状态与优先级调度的深度分析
✨ 山海自有归期,风雨自有相逢 🌏 📃个人主页:island1314 🔥个人专栏:Linux—登神长阶 ⛺️ 欢迎关注:👍点赞 …...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...