当前位置: 首页 > news >正文

matlab-对比两张图片的HSV分量的差值并形成直方图

%对比两张图片的HSV分量的差值并形成直方图,改个路径就能用,图片分辨率要一致

close all;
clear all;
clc;
I1=imread('E:\test\resources\image\1.jpg');
I2=imread('E:\test\resources\image\2.jpg');


HSV1 = rgb2ntsc(I1);
HSV2 = rgb2ntsc(I2);

%HSV,HSV 代表色相(Hue)、饱和度(Saturation)和亮度(Value),它提供了一种直观的方式来描述颜色的不同方面。

H1=HSV1(:, :, 1);
S1=HSV1(:, :, 2);
V1=HSV1(:, :, 3);

H2=HSV2(:,:,1);
S2=HSV2(:,:,2);
V2=HSV2(:,:,3);

%显示彩色图像
figure;
subplot(141);%拿subplot(221)来说,就是一个2*2的矩阵画布,1代表图片处于第一个位置:
imshow(I1);
%R分量灰度图
subplot(142);imshow(H1);
%G分量灰度图
subplot(143);imshow(S1);
%B分量灰度图
subplot(144);imshow(V1);


figure;
subplot(141);%拿subplot(221)来说,就是一个2*2的矩阵画布,1代表图片处于第一个位置:
imshow(I2);
%R分量灰度图
subplot(142);imshow(H2);
%G分量灰度图
subplot(143);imshow(S2);
%B分量灰度图
subplot(144);imshow(V2);

H_fault=abs(H1-H2);
S_fault=abs(S1-S2);
V_fault=abs(V1-V2);

figure;
%显示红色分辨率下的直方图
subplot(131);
imhist(H1);
%显示红色分辨率下的直方图
subplot(132);
imhist(S1);
%显示红色分辨率下的直方图
subplot(133);
imhist(V1);

figure;
%显示红色分辨率下的直方图
subplot(131);
imhist(H2);
%显示红色分辨率下的直方图
subplot(132);
imhist(S2);
%显示红色分辨率下的直方图
subplot(133);
imhist(V2);

figure;
%显示红色分辨率下的直方图
subplot(131);
imhist(H_fault);
%显示红色分辨率下的直方图
subplot(132);
imhist(S_fault);
%显示红色分辨率下的直方图
subplot(133);
imhist(V_fault);

相关文章:

matlab-对比两张图片的HSV分量的差值并形成直方图

%对比两张图片的HSV分量的差值并形成直方图,改个路径就能用,图片分辨率要一致 close all; clear all; clc; I1imread(E:\test\resources\image\1.jpg); I2imread(E:\test\resources\image\2.jpg); HSV1 rgb2ntsc(I1); HSV2 rgb2ntsc(I2); %HSV,HSV 代…...

微服务SpringGateway解析部署使用全流程

官网地址: Spring Cloud Gateway 目录 1、SpringGateway简介 1、什么是网关 2、为什么用网关【为了转发】 2、应用: 1.启动nacos 2.创建网关项目 3.网关配置1 4.网关配置2【了解】 5.过滤器配置【了解】 1、SpringGateway简介 核心功能有三个&…...

Solidity 存储和内存管理:深入理解与高效优化

在 Solidity 中,存储和内存管理是编写高效智能合约的关键组成部分。合约执行的每一步操作都可能涉及到数据的存储和读取,而这些操作对 gas 的消耗有很大影响。因此,理解 Solidity 的存储模型以及如何优化数据的管理对于合约的安全性、性能和成…...

机器学习篇-day02-KNN算法实现鸢尾花模型和手写数字识别模型

一. KNN简介 KNN思想 K-近邻算法(K Nearest Neighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别 KNN算法思想:如果一个样本在特征空间中的k 个最相似的样本中的大多数属于某一个类别,则该样本也属…...

【C++】STL--vector

1.vector的介绍 我们先来看看vector的文档介绍,实际中我们只要熟悉相关接口就好了。 成员函数 使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习 2 vector的使用 v…...

Java使用Redis的详细教程

Redis是一个基于内存的key-value结构数据库,即非关系型数据库,具有高性能、丰富的数据类型、持久化、高可用性和分布式等特点。在Java项目中,Redis通常用于缓存、分布式锁、计数器、消息队列和排行榜等场景。以下是在Java中使用Redis的详细教…...

严重 Zimbra RCE 漏洞遭大规模利用(CVE-2024-45519)

攻击者正在积极利用 CVE-2024-45519,这是一个严重的 Zimbra 漏洞,该漏洞允许他们在易受攻击的安装上执行任意命令。 Proofpoint 的威胁研究人员表示,攻击始于 9 月 28 日,几周前,Zimbra 开发人员发布了针对 CVE-2024-…...

php函数积累

对称函数 isset 判断数组arr中是否存在键key 返回值true/false isset(name,$arr) unset 删除数组中的键 需存在key不然抛出异常 unset($arr[name]) json_encode 数据转json格式 json_encode($arr) 一般形式 指定字符编码形式 json_decode json格式转原有数据格式 json_d…...

前端项目场景相关的面试题,包含验证码、图片存储、登录鉴权、动态路由、组件划分等项目场景实际的面试题

项目场景面试题 如何防止短信验证码被刷 问题场景 添加倒计时和图片滑动验证,避免不必要的资源浪费 发送短信验证码需要费用发送短信消耗服务器资源 公司的图片、视频、文件资源如何存储的 传统模式 分开存储到数据服务器,托管服务器到云端 缺点&…...

uniapp 上了原生的 echarts 图表插件了 兼容性还行

插件地址:echarts - DCloud 插件市场 兼容性这块儿不知道后期会不会支持其他浏览器 H5 的话建议可以用原生的不用这个插件...

共享单车轨迹数据分析:以厦门市共享单车数据为例(八)

副标题:基于POI数据的站点综合评价——以厦门市为例(三) 什么是优劣解距离法(TOPSIS)? 优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,简称TOPSI…...

sentinel原理源码分析系列(二)-动态规则和transport

本文是sentinel原理源码分析系列第二篇,分析两个组件,动态配置和transport 动态规则 Sentinel提供动态规则机制,依赖配置中心,如nacos,zookeeper,组件支持动态配置,模板类型为规则,支…...

ubuntu切换源方式记录(清华源、中科大源、阿里源)

文章目录 前言一、中科大源二、清华源三、阿里源 前言 记录ubunut切换各个源的方式。 备注:更换源之后使用sudo apt-get update更新索引。 提示:以下是本篇文章正文内容,下面案例可供参考 一、中科大源 地址:https://mirrors.u…...

【10】纯血鸿蒙HarmonyOS NEXT星河版开发0基础学习笔记-泛型基础全解(泛型函数、泛型接口、泛型类)及参数、接口补充

序言: 本文详细讲解了关于ArkTs语言中的泛型,其中包含泛型函数、泛型接口、泛型约束、泛型类及其中参数的使用方法,补充了一部分接口相关的知识,包括接口的继承和具体实现,也写到了一些边边角角的小知识,剩…...

2024年09月CCF-GESP编程能力等级认证C++编程一级真题解析

本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 据有关资料,山东大学于1972年研制成功DJL-1计算机,并于1973年投入运行,其综合性能居当时全国第三位。DJL-1计算机运算控制…...

基于多维统计分析与GMM聚类的食品营养特征研究

1.项目背景 在当今社会,随着人们对健康和营养的日益关注,深入了解食品的营养成分及其对人体的影响变得越来越重要,本研究采用了多维度的分析方法,包括营养成分比较分析、统计检验、营养密度分析和高斯混合模型(GMM&am…...

SkyWalking 告警功能

SkyWalking 告警功能是在 6.x 版本新增的,其核心由一组规则驱动,这些规则定义在config/alarm-settings.yml文件中。 告警规则 告警规则:它们定义了应该如何触发度量警报,应该考虑什么条件。Webhook(网络钩子):定义当警告触发时,哪些服务终端需要被告知。常用告警规则 …...

国内旅游:现状与未来趋势分析

在当今社会快速发展的背景下,国内旅游更是呈现出蓬勃的发展态势。中国,这片拥有悠久历史、灿烂文化和壮丽山河的广袤土地,为国内旅游的兴起与发展提供了得天独厚的条件。 本报告将借助 DataEase 强大的数据可视化分析能力,深入剖…...

西电25考研 VS 24考研专业课大纲变动汇总

01专业课变动 西安电子科技大学专业课学长看到953网络安全基础综合变为 893网络安全基础综合,这是因为工科要求都必须是8开头的专业课,里面参考课本还是没变的,无非就是变了一个名字 对于其他变动专业课也是同理的 02专业课考纲内容变化 对于…...

【Linux】进程管理:状态与优先级调度的深度分析

✨ 山海自有归期,风雨自有相逢 🌏 📃个人主页:island1314 🔥个人专栏:Linux—登神长阶 ⛺️ 欢迎关注:👍点赞 &#x1…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...