当前位置: 首页 > news >正文

二、kafka生产与消费全流程

一、使用java代码生产、消费消息

1、生产者

package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;/*** kafka生产者配置** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class HelloKafkaProducer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);try {ProducerRecord<String, String> producerRecord;try {// 构建消息producerRecord = new ProducerRecord<>("topic_1", "student", "allwe");// 发送消息producer.send(producerRecord);System.out.println("消息发送成功");} catch (Exception e) {e.printStackTrace();}} finally {// 释放连接producer.close();}}
}

2、消费者

package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** kafka生产者配置** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class HelloKafkaConsumer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.deserializer", StringDeserializer.class);properties.put("value.deserializer", StringDeserializer.class);properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");// new一个消费者consumerKafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);try {// 订阅哪些主题,可以多个,推荐订阅一个主题consumer.subscribe(Collections.singleton("topic_1"));// 死循环里面实现监听while (true) {// 每间隔1s,取一次消息,可能取到多条消息// 设置一秒的超时时间ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> record : records) {System.out.println("key:" + record.key() + ",value:" + record.value());}}} finally {// 释放连接consumer.close();}}
}

3、踩坑

如果连接的不是本机的kafka,需要在目标机器的kafka配置文件中配置真实的ip地址,如果使用默认的配置或者配置为localhost:9092,kafka.clients会将目标机器的ip解析为127.0.0.1,导致连接不上kafka。

二、生产者

1、序列化器

在上面的demo中,由于消息的key和value都是String类型的,就可以使用kafka.client提供的String序列化器,如果想要发送其他自定义类型的对象,可以手动编写一个序列化器和反序列化器,实现Serializer接口,将对象和byte数组互相转换即可。

需要注意的是,生产者使用的自定义序列化器必须和消费者使用的反序列化器对应,否则无法正确解析消息。

那么什么情况下需要使用自定义序列化器呢?

        -- 需要兼容一些其他协议。

2、分区器

发送的消息被分配到哪个分区中?分区是如何选择的?假设上面的demo中,主题topic_1有4个分区,分别发送4次消息,处理分区的逻辑是怎样的?

这里需要先配置kafka在创建新的主题时,默认的分区数量,我这里配置为了4。

1)指定分区器

可以选择在创建生产者时,给生产者配置相关的分区器,指定具体分区算法。kafka.client提供了一些分区器,或者自己实现一个分区器。

// 设置分区规则
Properties properties = new Properties();
// 1、默认分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, DefaultPartitioner.class);
// 2、统一粘性分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, UniformStickyPartitioner.class);
// 3、自定义分区器
properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);

自定义分区器:

package com.allwe.client.partitioner;import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;import java.util.List;
import java.util.Map;/*** 自定义分区器 - 以value值分区*/
public class MyPartitioner implements Partitioner {@Overridepublic int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {List<PartitionInfo> partitionInfoList = cluster.partitionsForTopic(topic);// 以value值的byte数组处理后再和分区数取模,决定放在哪个分区上return Utils.toPositive(Utils.murmur2(valueBytes)) % partitionInfoList.size();}@Overridepublic void close() {}@Overridepublic void configure(Map<String, ?> map) {}
}

2)指定分区

也可以选择在构建消息时指定分区,此时的分区优先级最高,不会被其他分区器影响。

# 创建消息时指定分区为 0
ProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_1", 0, "student", "allwe");

3、生产者发送消息的回调

package com.allwe.client.partitioner;import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
import java.util.concurrent.Future;/*** kafka生产者配置 - 自定义分区器 & 发送消息回调** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class PartitionerProducer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);// 设置自定义分区器properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);try {ProducerRecord<String, String> producerRecord;try {// 构建指定分区的消息,此时指定的分区不会变// producerRecord = new ProducerRecord<>("topic_1", 0, "student", "allwe");for (int i = 0; i < 10; i++) {// 构建消息producerRecord = new ProducerRecord<>("topic_2", "student", "allwe" + i);// 发送消息Future<RecordMetadata> future = producer.send(producerRecord);// 解析回调元数据RecordMetadata recordMetadata = future.get();System.out.println(i + ",offset:" + recordMetadata.offset() + ",partition:" + recordMetadata.partition());}} catch (Exception e) {e.printStackTrace();}} finally {// 释放连接producer.close();}}
}

打印结果:

4、异步解析生产者发送消息的回调

package com.allwe.client.callBack;import com.allwe.client.partitioner.MyPartitioner;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;/*** kafka生产者配置 - 异步解析发送消息回调** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class AsynPartitionerProducer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();// 指定连接的kafka服务器地址,多台就用“,”隔开,如果某一台宕机生产者依然可以连接properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");// 设置key和value的序列化器,使java对象转换成二进制数组properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);// 设置自定义分区器properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);try {ProducerRecord<String, String> producerRecord;try {for (int i = 0; i < 10; i++) {// 构建消息producerRecord = new ProducerRecord<>("topic_3", "student", "allwe" + i);// 发送消息, 设置异步回调解析器producer.send(producerRecord, new CallBackImpl());}System.out.println("发送完成,topic_4");} catch (Exception e) {e.printStackTrace();}} finally {// 释放连接producer.close();}}
}
package com.allwe.client.callBack;import cn.hutool.core.util.ObjectUtil;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.RecordMetadata;/*** 异步发送消息回调解析器*/
public class CallBackImpl implements Callback {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if (ObjectUtil.isNull(e)) {// 解析回调元数据System.out.println("offset:" + recordMetadata.offset() + ",partition:" + recordMetadata.partition());} else {e.printStackTrace();}}
}

5、生产者缓冲

1)为什么kafka在客户端发送消息的时候需要做一个缓冲?

① 减少IO的开销(单个 -> 批次),需要修改配置文件。

② 减少GC(核心)。

2)如何配置缓冲?

producer.properties配置文件中修改下面两个参数:

消息的大小:batch.size = 默认16384(16K) 

暂存的时间:linger.ms = 默认0ms

上面两个条件只要达到一个,就会发送消息,所以在默认配置下,生产一条消息就立即发送。

3)减少GC的原理

producer.properties配置文件的参数:

缓冲池大小:buffer.memory = 默认32M

kafka客户端使用了缓冲池,默认大小32M,当有一条新的消息进入缓冲池,达到了任何一个条件后就发送。发送后不用立即回收内存,而是初始化一下缓冲池即可,减少了GC的次数。

简单说就是利用池化技术减少了对象的创建 -> 减少内存分配次数 -> 减少了垃圾回收次数。

4)使用缓冲池的风险

当缓存的消息超出缓冲池的大小,kafka就会抛出OOM异常。

如果写入消息太快,但是上一次send方法没有执行完,就会导致上一次缓存的消息不能删除,这一次进来的消息又太多,最终写满了缓冲池,触发OOM异常。

解决办法就是适当调整buffer.memory参数和batch.size参数,增加缓冲池大小,缩小每一批次的大小。

三、Kafka Broker

消息从生产者发送出去后,就进入了broker中。在kafka broker中,每一个分区就是一个文件。

四、消费者

1、消费者群组

在消费的过程中,一般情况下使用群组消费,设置group_id_config。

核心:kafka群组消费的负载均衡建立在分区级别。

1)单个群组场景

一个分区只能由一个消费者消费。

在kafka执行过程中,支持动态添加或者减少消费者。

2)多个群组场景

群组之间的消费是互不干扰的,比如群组A的消费者和群组B的消费者可以同时消费同一个分区的消息。

2、Demo记录

写一个生产者,我为了测试顺畅写了一个无限循环的。只启动一次,输入参数即可实现批量发送消息。

package com.allwe.client.singleGroup;import com.allwe.client.partitioner.MyPartitioner;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
import java.util.Scanner;/*** kafka生产者配置 - 无限生产消息** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class Producer {public static void main(String[] args) {// 设置属性Properties properties = new Properties();properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");properties.put("key.serializer", StringSerializer.class);properties.put("value.serializer", StringSerializer.class);properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, MyPartitioner.class);// new一个生产者producerKafkaProducer<String, String> producer = new KafkaProducer<>(properties);Scanner scanner = new Scanner(System.in);;try {int count;while (true) {System.out.println("==================输入消息条数===================");String nextLine = scanner.nextLine();if ("exit".equals(nextLine)) {break;}count = Integer.parseInt(nextLine);ProducerRecord<String, String> producerRecord;try {for (int i = 0; i < count; i++) {// 构建消息producerRecord = new ProducerRecord<>("topic_5", "topic_5", "allwe" + i);producer.send(producerRecord);}} catch (Exception e) {e.printStackTrace();}System.out.println("发送完成,topic_5");}} catch (Exception e) {throw new RuntimeException(e);} finally {// 释放连接producer.close();scanner.close();}}
}
生产者控制台展示​​

写一个消费者base类,由于测试消费者需要启动很多类,我这里为了方便写了一个baseConsumer类,调用时new这个类的对象即可调用消费方法。

package com.allwe.client.singleGroup;import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** kafka 消费者配置** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
@Data
public class SingleGroupBaseConsumer {private String groupIdConfig;private String topicName;private KafkaConsumer<String, String> consumer;public SingleGroupBaseConsumer(String groupIdConfig, String topicName) {this.groupIdConfig = groupIdConfig;this.topicName = topicName;createConsumer();}private void createConsumer() {// 设置属性Properties properties = new Properties();properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");properties.put("key.deserializer", StringDeserializer.class);properties.put("value.deserializer", StringDeserializer.class);properties.put(ConsumerConfig.GROUP_ID_CONFIG, groupIdConfig);consumer = new KafkaConsumer<>(properties);}public void poll() {try {consumer.subscribe(Collections.singleton(topicName));while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));int count = 0;for (ConsumerRecord<String, String> record : records) {count = 1;System.out.println("partition:" + record.partition() + ",key:" + record.key() + ",value:" + record.value());}if (count == 1) {// 消费到消息了就打印分隔线System.out.println("===============================");}}} finally {consumer.close();}}
}

 1)单个群组场景

群组id:allwe01

package com.allwe.client.singleGroup;import lombok.extern.slf4j.Slf4j;/*** kafka消费者启动器** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class SingleGroupConsumer_1 {public static void main(String[] args) {SingleGroupBaseConsumer singleGroupBaseConsumer = new SingleGroupBaseConsumer("allwe01", "topic_5");singleGroupBaseConsumer.poll();}
}
消费者控制台展示

我这里只放了一个消费者的消费记录,根据消费者控制台打印的数据,可以看到两条信息:

① 该消费者只能消费分区=1的消息。

② 消费者消费消息时,每次拿到的消息数量不确定。

2)多个群组场景

群组id:allwe02

package com.allwe.client.group;import com.allwe.client.singleGroup.SingleGroupBaseConsumer;
import lombok.extern.slf4j.Slf4j;/*** kafka消费者启动器** @Author: AllWe* @Date: 2024/09/24/17:57*/
@Slf4j
public class GroupConsumer_1 {public static void main(String[] args) {SingleGroupBaseConsumer singleGroupBaseConsumer = new SingleGroupBaseConsumer("allwe02", "topic_5");singleGroupBaseConsumer.poll();}
}
消费者控制台展示

可以看到,这里新加入了一个消费者群组,只有一个消费者,它就消费到了全部分区的消息。

3、ACK确认

消费者在成功消费消息后,会进行ACK确认。提交最后一次消费消息的偏移量,下一次消费就从上次提交的偏移量开始,如果一个新的消费者群组消费一个主题的消息,可以根据不同的配置来指定起始的偏移量。

// 从最早的消息开始消费
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");// 从已提交的偏移量开始消费 - 默认配置
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest");

在kafka内部,有一个名字叫【__consumer_offsets】的主题,保存了消费者对各个主题的消费偏移量。消费者每一次发送的ACK确认,都会更新这个主题中的偏移量数据。

1)自动提交ACK的消费模式

默认的消费模式。

只要拿到了消息,就自动提交ACK确认。

但是有一个风险,就是虽然消费者成功取到了消息,但是在程序处理过程中出现了异常,同时提交了ACK确认,那么这条消息就永远不会被正确地处理。

所以有时候我们需要避免自动提交ACK确认,改成手动提交ACK确认。

2)手动提交ACK确认

取消自动提交

// 取消自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
① 同步提交
// 同步提交ACK确认 - 提交不成功就一直重试,成功后才会继续往下执行
consumer.commitSync();

立刻进行ACK确认。但是容易造成阻塞,只有等待ACK确认成功后,才会继续执行程序。如果ACK确认不成功,就会一直重试。

② 异步提交
// 异步提交ACK确认
consumer.commitAsync();

异步提交不会阻塞应用程序,提交失败不会重试提交。

③ 组合使用demo
    public void poll() {try {consumer.subscribe(Collections.singleton(topicName));while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));int count = 0;for (ConsumerRecord<String, String> record : records) {count = 1;System.out.println("partition:" + record.partition() + ",offset:" + record.offset() +",key:" + record.key() + ",value:" + record.value());}if (count == 1) {// 消费到消息了就打印分隔线System.out.println("===============================");}// 异步提交ACK确认consumer.commitAsync();}} finally {try {// 同步提交ACK确认 - 提交不成功就一直重试,成功后才会继续往下执行consumer.commitSync();} finally {consumer.close();}}}

3)手动批量提交ACK确认

如果消费者在某一时刻取到的消息数量太多,那么给每一条消息单独提交ACK确认太浪费资源,可以选择批量提交ACK确认。核心思想就是在程序中暂存偏移量,达到设定的阈值后就触发批量提交。

kafka.Consumer提供的异步提交ACK方法支持批量提交。

相关文章:

二、kafka生产与消费全流程

一、使用java代码生产、消费消息 1、生产者 package com.allwe.client.simple;import lombok.extern.slf4j.Slf4j; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.pr…...

本地搭建OnlyOffice在线文档编辑器结合内网穿透实现远程协作

文章目录 前言1. 安装Docker2. 本地安装部署ONLYOFFICE3. 安装cpolar内网穿透4. 固定OnlyOffice公网地址 前言 本篇文章讲解如何使用Docker在本地Linux服务器上安装ONLYOFFICE&#xff0c;并结合cpolar内网穿透实现公网访问本地部署的文档编辑器与远程协作。 Community Editi…...

ScrapeGraphAI 大模型增强的网络爬虫

在数据驱动的动态领域&#xff0c;从在线资源中提取有价值的见解至关重要。从市场分析到学术研究&#xff0c;对特定数据的需求推动了对强大的网络抓取工具的需求。 NSDT工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线…...

PDF转换为TIF,JPG的一个简易工具(含下载链接)

目录 0.前言&#xff1a; 1.工具目录 2.工具功能&#xff08;效果&#xff09;&#xff0c;如何运行 效果 PDF转换为JPG&#xff08;带颜色&#xff09; PDF转换为TIF&#xff08;LZW形式压缩&#xff0c;可以显示子的深浅&#xff09; PDF转换为TIF&#xff08;CCITT形…...

Wireshark 解析QQ、微信的通信协议|TCP|UDP

写在前面 QQ&#xff0c;微信这样的聊天软件。我们一般称为im&#xff0c;Instant Messaging&#xff0c;即时通讯系统。那大家会不会有疑问&#xff0c;自己聊天内容会不会被黑客或者不法分子知道&#xff1f;这种体量的im是基于tcp还是udp呢&#xff1f;这篇文章我们就来探索…...

网络编程(5)——模拟伪闭包实现连接的安全回收

六、day6 今天学习如何利用C11模拟伪闭包实现连接的安全回收&#xff0c;之前的异步服务器为echo模式&#xff0c;但存在安全隐患&#xff0c;在极端情况下客户端关闭可能会导致触发写和读回调函数&#xff0c;二者都进入错误处理逻辑&#xff0c;进而造成二次析构。今天学习如…...

C#绘制动态曲线

前言 用于实时显示数据动态曲线&#xff0c;比如&#xff1a;SOC。 //用于绘制动态曲线&#xff0c;可置于定时函数中&#xff0c;定时更新数据曲线 void DrawSocGraph() {double f (double)MainForm.readData[12]; //display datachart1.Series[0].Points.Add(f);if (ch…...

用Python实现运筹学——Day 10: 线性规划的计算机求解

一、学习内容 1. 使用 Python 的 scipy.optimize.linprog 进行线性规划求解 scipy.optimize.linprog 是 Python 中用于求解线性规划问题的函数。它实现了单纯形法、内点法等算法&#xff0c;能够处理求解最大化或最小化问题&#xff0c;同时满足线性约束条件。 线性规划问题的…...

[C++]使用C++部署yolov11目标检测的tensorrt模型支持图片视频推理windows测试通过

官方框架&#xff1a; https://github.com/ultralytics/ultralytics yolov8官方最近推出yolov11框架&#xff0c;标志着目标检测又多了一个检测利器&#xff0c;于是尝试在windows下部署yolov11的tensorrt模型&#xff0c;并最终成功。 重要说明&#xff1a;安装环境视为最基…...

霍夫曼树及其与B树和决策树的异同

霍夫曼树是一种用于数据压缩的二叉树结构&#xff0c;通常应用于霍夫曼编码算法中。它的主要作用是通过对符号进行高效编码&#xff0c;减少数据的存储空间。霍夫曼树在压缩领域扮演着重要角色&#xff0c;与B树、决策树等数据结构都有一些相似之处&#xff0c;但又在应用场景和…...

CompletableFuture常用方法

一、获得结果和触发计算 1.获取结果 &#xff08;1&#xff09;public T get() public class CompletableFutureAPIDemo{public static void main(String[] args) throws ExecutionException, InterruptedException{CompletableFuture<String> completableFuture Com…...

本地化测试对游戏漏洞修复的影响

本地化测试在游戏开发的质量保证过程中起着至关重要的作用&#xff0c;尤其是在修复bug方面。当游戏为全球市场做准备时&#xff0c;它们通常会被翻译和改编成各种语言和文化背景。这种本地化带来了新的挑战&#xff0c;例如潜在的语言错误、文化误解&#xff0c;甚至是不同地区…...

使用rust实现rtsp码流截图

中文互联网上的rust示例程序源码还是太稀少&#xff0c;找资料很是麻烦&#xff0c;下面是自己用业余时间开发实现的一个对批量rtsp码流源进行关键帧截图并存盘的rust demo源码记录。 要编译这个源码需要先安装vcpkg&#xff0c;然后用vcpkg install ffmpeg安装最新版本的ffmpe…...

Cpp::STL—string类的模拟实现(12)

文章目录 前言一、string类各函数接口总览二、默认构造函数string(const char* str "");string(const string& str);传统拷贝写法现代拷贝写法 string& operator(const string& str);传统赋值构造现代赋值构造 ~string(); 三、迭代器相关函数begin &…...

一文搞懂SentencePiece的使用

目录 1. 什么是 SentencePiece&#xff1f;2. SentencePiece 基础概念2.1 SentencePiece 的工作原理2.2 SentencePiece 的优点 3. SentencePiece 的使用3.1 安装 SentencePiece3.2 训练模型与加载模型3.3 encode&#xff08;高频&#xff09;3.4 decode&#xff08;高频&#x…...

一个简单的摄像头应用程序1

这个Python脚本实现了一个基于OpenCV的简单摄像头应用,我们在原有的基础上增加了录制视频等功能,用户可以通过该应用进行拍照、录制视频,并查看已拍摄的照片。以下是该脚本的主要功能和一些使用时需要注意的事项: 功能 拍照: 用户可以通过点击界面上的“拍照”按钮或按…...

通过PHP获取商品详情

在电子商务的浪潮中&#xff0c;数据的重要性不言而喻。商品详情信息对于电商运营者来说尤为宝贵。PHP&#xff0c;作为一种广泛应用的服务器端脚本语言&#xff0c;为我们提供了获取商品详情的便捷途径。 了解API接口文档 开放平台提供了详细的API接口文档。你需要熟悉商品详…...

【Android】获取备案所需的公钥以及签名MD5值

目录 重要前提 获取签名MD5值 获取公钥 重要前提 生成jks文件以及gradle配置应用该文件。具体步骤请参考我这篇文章&#xff1a;【Android】配置Gradle打包apk的环境_generate signed bundle or apk-CSDN博客 你只需要从头看到该文章的配置build.gradle&#xff08;app&…...

看480p、720p、1080p、2k、4k、视频一般需要多大带宽呢?

看视频都喜欢看高清,那么一般来说看电影不卡顿需要多大带宽呢? 以4K为例,这里引用一位网友的回答:“视频分辨率4092*2160,每个像素用红蓝绿三个256色(8bit)的数据表示,视频帧数为60fps,那么一秒钟画面的数据量是:4096*2160*3*8*60≈11.9Gbps。此外声音大概是视频数据量…...

解决IDEA中@Autowired红色报错的实用指南:原因与解决方案

前言&#xff1a; 在使用Spring Boot开发时&#xff0c;Autowired注解是实现依赖注入的常用方式。然而&#xff0c;许多开发者在IDEA中使用Autowired时&#xff0c;可能会遇到红色报错&#xff0c;导致代码的可读性降低。本文将探讨导致这种现象的原因&#xff0c;并提供几种解…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...