当前位置: 首页 > news >正文

DenseNet算法:口腔癌识别

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

一 DenseNet算法结构

其基本思路与ResNet一致,但是它建立的是前面所有层和后面层的密集连接,它的另一大特色是通过特征在channel上的连接来实现特征重用。 

二 设计理念 

 

三 结构 

四 算法代码 

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlib,randomdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")device
data_dir = './data/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNamesimport matplotlib.pyplot as plt
from PIL import Image# 指定图像文件夹路径
image_folder = './data/OSCC/'# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):img_path = os.path.join(image_folder, img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')# 显示图像
plt.tight_layout()
plt.show()

total_datadir = './data/'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data# 划分训练集
train_size = int(0.7 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_datasetbatch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import re
import torch
from torch.utils import model_zoo
from torchvision.models.video.resnet import model_urls'''
_DenseLayer 类实现了 DenseNet 的关键机制:
通过使用批归一化、ReLU 激活和卷积层来提取特征,并通过密集连接促进特征的共享和再利用。
'''
class _DenseLayer(nn.Sequential):def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):''':param num_input_features: 输入特征数:param growth_rate: 每层增长的特征数:param bn_size: 批归一化层的大小:param drop_rate: 丢弃率'''super(_DenseLayer, self).__init__()# 添加一个批归一化层(BatchNorm2d),用于对输入特征进行标准化self.add_module("norm1", nn.BatchNorm2d(num_input_features))# 添加一个 ReLU 激活函数self.add_module("relu1", nn.ReLU(inplace=True))# 添加第一个卷积层(Conv2d),其输入通道数为 num_input_features,输出通道数为 bn_size * growth_rate。# 这里使用 1x1 卷积,主要用于减少特征图的维度,并引入更多特征self.add_module("conv1", nn.Conv2d(num_input_features, bn_size * growth_rate,kernel_size=1, stride=1, bias=False))# 添加第二个批归一化层,应用于第一个卷积层的输出self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))# 添加第二个 ReLU 激活函数。与第一个激活函数相同,提供非线性变换self.add_module("relu2", nn.ReLU(inplace=True))# 添加第二个卷积层,输入通道数为 bn_size * growth_rate,输出通道数为 growth_rate。# 这里使用 3x3 卷积,通常用于提取更复杂的特征self.add_module("conv2", nn.Conv2d(bn_size * growth_rate, growth_rate,kernel_size=3, stride=1, padding=1, bias=False))# 保存丢弃率(drop rate),用于在前向传播中进行 dropout 操作,以防止过拟合self.drop_rate = drop_ratedef forward(self, x):# 调用父类 nn.Sequential 的 forward 方法,将输入 x 传递给之前添加的所有层。# 输出 new_features 是经过所有层处理后的特征new_features = super(_DenseLayer, self).forward(x)# 检查丢弃率是否大于 0,如果是,则进行 dropout 操作if self.drop_rate > 0:# 对新特征应用 dropout,p 是丢弃概率,training 参数指示当前是否在训练模式。这将随机将一部分特征置为零,从而帮助减少过拟合new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)# 将输入 x 和新特征 new_features 在通道维度(即维度 1)上连接。这样可以实现密集连接,允许模型利用前面层的所有特征return torch.cat([x, new_features], 1)'''
创建一个包含多个密集层的模块,每个层都会根据前面层的输出特征动态调整输入特征数量,形成一个密集连接的网络结构。
'''
class _DenseBlock(nn.Sequential):def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):'''num_layers: 该密集块中层的数量。num_input_features: 输入特征的数量。bn_size: 批量归一化的大小。growth_rate: 每层输出特征的增长率。drop_rate: dropout 率,用于防止过拟合'''super(_DenseBlock, self).__init__()# 开始一个循环,迭代 num_layers 次,为每一层创建一个密集层for i in range(num_layers):# 在每次迭代中,创建一个新的 _DenseLayer 实例。该层的输入特征数量为 num_input_features + i * growth_rate,即前面所有层的输出特征总和layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)# 将创建的密集层添加到模块中,并命名为 denselayer1、denselayer2,依此类推。这样可以方便后续访问和调试self.add_module("denselayer%d" % (i + 1,), layer)'''
构建神经网络的一个过渡层,在神经网络中通常用于特征的转换和下采样
'''
class _Transition(nn.Sequential):def __init__(self,num_input_feature,num_output_features):super(_Transition,self).__init__()# 添加一个批归一化层,标准化输入特征self.add_module("norm",nn.BatchNorm2d(num_input_feature))# 添加一个 ReLU 激活函数self.add_module("relu",nn.ReLU(inplace=True))# 添加一个卷积层,使用 1x1 的卷积核,连接输入特征和输出特征。self.add_module("conv",nn.Conv2d(num_input_feature,num_output_features,kernel_size=1,stride=1,bias=False))# 添加一个 2x2 的平均池化层,步幅为 2,用于减少特征图的大小self.add_module("pool",nn.AvgPool2d(2,stride=2))class DenseNet(nn.Module):def __init__(self,growth_rate=32,block_config=(6,12,24,16),num_init_features=64,bn_size=4,compression_rate=0.5,drop_rate=0,num_classes=1000):'''growth_rate: 每个DenseBlock中每层输出特征图的增长率。block_config: 一个元组,指定每个DenseBlock中的层数。num_init_features: 第一层卷积的输出特征数量。bn_size: Batch Normalization的大小compression_rate: 每个Transition层中输出特征数量的压缩比例。drop_rate: Dropout的概率num_classes: 最终分类的类别数。'''super(DenseNet,self).__init__()# 第一层卷积self.features = nn.Sequential(OrderedDict([("conv0",nn.Conv2d(3,num_init_features,kernel_size=7,stride=2,padding=3,bias=False)),("norm0",nn.BatchNorm2d(num_init_features)),("relu0",nn.ReLU(inplace=True)),("pool0",nn.MaxPool2d(3,stride=2,padding=1))]))# DenseBlocknum_features = num_init_features# 遍历block_config,为每个DenseBlock构建模型for i,num_layers in enumerate(block_config):block = _DenseBlock(num_layers,num_features,bn_size,growth_rate,drop_rate)self.features.add_module("denseblock%d"%(i+1),block)# 更新当前特征数量,每个DenseBlock后增加num_layers * growth_ratenum_features += num_layers*growth_rateif i != len(block_config) - 1:# 定义Transition层,连接DenseBlock,减小特征图尺寸(通过compression_ratetransition = _Transition(num_features,int(num_features*compression_rate))# 将DenseBlock和Transition层添加到模型中self.features.add_module("transition%d"%(i+1),transition)num_features = int(num_features * compression_rate)# final bn+relu# 在所有DenseBlock和Transition层之后,添加一个Batch Normalization层和ReLU激活层self.features.add_module("norm5",nn.BatchNorm2d(num_features))self.features.add_module("relu5",nn.ReLU(inplace=True))# classification layer# 定义全连接层,将特征映射到类别数self.classifier = nn.Linear(num_features,num_classes)# 参数初始化'''遍历所有模块,初始化权重。卷积层: 使用Kaiming正态分布初始化。BatchNorm层: 将偏置初始化为0,权重初始化为1。全连接层: 将偏置初始化为0。'''for m in self.modules():if isinstance(m,nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m,nn.BatchNorm2d):nn.init.constant_(m.bias,0)nn.init.constant_(m.weight,1)elif isinstance(m,nn.Linear):nn.init.constant_(m.bias,0)def forward(self,x):'''self.features(x): 将输入x传递通过所有特征层。F.avg_pool2d: 在特征图上进行全局平均池化。view(features.size(0), -1): 将池化后的特征展平。self.classifier(out): 通过分类层得到输出。return out: 返回最终的分类结果。'''features = self.features(x)out = F.avg_pool2d(features,7,stride=1).view(features.size(0),-1)out = self.classifier(out)return outdef densetnet121(pretrained=False, **kwargs):model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=len(classeNames))if pretrained:pattern = re.compile(r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')# 从指定的 URL 加载 DenseNet-121 的预训练权重,存储在 state_dictstate_dict = model_zoo.load_url(model_urls['densenet121'])for key in list(state_dict.keys()):res = pattern.match(key)if res:# 创建一个新键,组合匹配结果的前半部分和后半部分new_key = res.group(1) + res.group(2)state_dict[new_key] = state_dict[key]del state_dict[key]# 将处理后的权重加载到模型中model.load_state_dict(state_dict)return modelmodel = densetnet121()
model
import torchsummary as summary
summary.summary(model,(3,224,224))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 64, 112, 112]           9,408BatchNorm2d-2         [-1, 64, 112, 112]             128ReLU-3         [-1, 64, 112, 112]               0MaxPool2d-4           [-1, 64, 56, 56]               0BatchNorm2d-5           [-1, 64, 56, 56]             128ReLU-6           [-1, 64, 56, 56]               0Conv2d-7          [-1, 128, 56, 56]           8,192BatchNorm2d-8          [-1, 128, 56, 56]             256ReLU-9          [-1, 128, 56, 56]               0Conv2d-10           [-1, 32, 56, 56]          36,864BatchNorm2d-11           [-1, 96, 56, 56]             192ReLU-12           [-1, 96, 56, 56]               0Conv2d-13          [-1, 128, 56, 56]          12,288BatchNorm2d-14          [-1, 128, 56, 56]             256ReLU-15          [-1, 128, 56, 56]               0Conv2d-16           [-1, 32, 56, 56]          36,864BatchNorm2d-17          [-1, 128, 56, 56]             256ReLU-18          [-1, 128, 56, 56]               0Conv2d-19          [-1, 128, 56, 56]          16,384BatchNorm2d-20          [-1, 128, 56, 56]             256ReLU-21          [-1, 128, 56, 56]               0Conv2d-22           [-1, 32, 56, 56]          36,864BatchNorm2d-23          [-1, 160, 56, 56]             320ReLU-24          [-1, 160, 56, 56]               0Conv2d-25          [-1, 128, 56, 56]          20,480BatchNorm2d-26          [-1, 128, 56, 56]             256ReLU-27          [-1, 128, 56, 56]               0Conv2d-28           [-1, 32, 56, 56]          36,864BatchNorm2d-29          [-1, 192, 56, 56]             384ReLU-30          [-1, 192, 56, 56]               0Conv2d-31          [-1, 128, 56, 56]          24,576BatchNorm2d-32          [-1, 128, 56, 56]             256ReLU-33          [-1, 128, 56, 56]               0Conv2d-34           [-1, 32, 56, 56]          36,864BatchNorm2d-35          [-1, 224, 56, 56]             448ReLU-36          [-1, 224, 56, 56]               0Conv2d-37          [-1, 128, 56, 56]          28,672BatchNorm2d-38          [-1, 128, 56, 56]             256ReLU-39          [-1, 128, 56, 56]               0Conv2d-40           [-1, 32, 56, 56]          36,864BatchNorm2d-41          [-1, 256, 56, 56]             512ReLU-42          [-1, 256, 56, 56]               0Conv2d-43          [-1, 128, 56, 56]          32,768AvgPool2d-44          [-1, 128, 28, 28]               0BatchNorm2d-45          [-1, 128, 28, 28]             256ReLU-46          [-1, 128, 28, 28]               0Conv2d-47          [-1, 128, 28, 28]          16,384BatchNorm2d-48          [-1, 128, 28, 28]             256ReLU-49          [-1, 128, 28, 28]               0Conv2d-50           [-1, 32, 28, 28]          36,864BatchNorm2d-51          [-1, 160, 28, 28]             320ReLU-52          [-1, 160, 28, 28]               0Conv2d-53          [-1, 128, 28, 28]          20,480BatchNorm2d-54          [-1, 128, 28, 28]             256ReLU-55          [-1, 128, 28, 28]               0Conv2d-56           [-1, 32, 28, 28]          36,864BatchNorm2d-57          [-1, 192, 28, 28]             384ReLU-58          [-1, 192, 28, 28]               0Conv2d-59          [-1, 128, 28, 28]          24,576BatchNorm2d-60          [-1, 128, 28, 28]             256ReLU-61          [-1, 128, 28, 28]               0Conv2d-62           [-1, 32, 28, 28]          36,864BatchNorm2d-63          [-1, 224, 28, 28]             448ReLU-64          [-1, 224, 28, 28]               0Conv2d-65          [-1, 128, 28, 28]          28,672BatchNorm2d-66          [-1, 128, 28, 28]             256ReLU-67          [-1, 128, 28, 28]               0Conv2d-68           [-1, 32, 28, 28]          36,864BatchNorm2d-69          [-1, 256, 28, 28]             512ReLU-70          [-1, 256, 28, 28]               0Conv2d-71          [-1, 128, 28, 28]          32,768BatchNorm2d-72          [-1, 128, 28, 28]             256ReLU-73          [-1, 128, 28, 28]               0Conv2d-74           [-1, 32, 28, 28]          36,864BatchNorm2d-75          [-1, 288, 28, 28]             576ReLU-76          [-1, 288, 28, 28]               0Conv2d-77          [-1, 128, 28, 28]          36,864BatchNorm2d-78          [-1, 128, 28, 28]             256ReLU-79          [-1, 128, 28, 28]               0Conv2d-80           [-1, 32, 28, 28]          36,864BatchNorm2d-81          [-1, 320, 28, 28]             640ReLU-82          [-1, 320, 28, 28]               0Conv2d-83          [-1, 128, 28, 28]          40,960BatchNorm2d-84          [-1, 128, 28, 28]             256ReLU-85          [-1, 128, 28, 28]               0Conv2d-86           [-1, 32, 28, 28]          36,864BatchNorm2d-87          [-1, 352, 28, 28]             704ReLU-88          [-1, 352, 28, 28]               0Conv2d-89          [-1, 128, 28, 28]          45,056BatchNorm2d-90          [-1, 128, 28, 28]             256ReLU-91          [-1, 128, 28, 28]               0Conv2d-92           [-1, 32, 28, 28]          36,864BatchNorm2d-93          [-1, 384, 28, 28]             768ReLU-94          [-1, 384, 28, 28]               0Conv2d-95          [-1, 128, 28, 28]          49,152BatchNorm2d-96          [-1, 128, 28, 28]             256ReLU-97          [-1, 128, 28, 28]               0Conv2d-98           [-1, 32, 28, 28]          36,864BatchNorm2d-99          [-1, 416, 28, 28]             832ReLU-100          [-1, 416, 28, 28]               0Conv2d-101          [-1, 128, 28, 28]          53,248BatchNorm2d-102          [-1, 128, 28, 28]             256ReLU-103          [-1, 128, 28, 28]               0Conv2d-104           [-1, 32, 28, 28]          36,864BatchNorm2d-105          [-1, 448, 28, 28]             896ReLU-106          [-1, 448, 28, 28]               0Conv2d-107          [-1, 128, 28, 28]          57,344BatchNorm2d-108          [-1, 128, 28, 28]             256ReLU-109          [-1, 128, 28, 28]               0Conv2d-110           [-1, 32, 28, 28]          36,864BatchNorm2d-111          [-1, 480, 28, 28]             960ReLU-112          [-1, 480, 28, 28]               0Conv2d-113          [-1, 128, 28, 28]          61,440BatchNorm2d-114          [-1, 128, 28, 28]             256ReLU-115          [-1, 128, 28, 28]               0Conv2d-116           [-1, 32, 28, 28]          36,864BatchNorm2d-117          [-1, 512, 28, 28]           1,024ReLU-118          [-1, 512, 28, 28]               0Conv2d-119          [-1, 256, 28, 28]         131,072AvgPool2d-120          [-1, 256, 14, 14]               0BatchNorm2d-121          [-1, 256, 14, 14]             512ReLU-122          [-1, 256, 14, 14]               0Conv2d-123          [-1, 128, 14, 14]          32,768BatchNorm2d-124          [-1, 128, 14, 14]             256ReLU-125          [-1, 128, 14, 14]               0Conv2d-126           [-1, 32, 14, 14]          36,864BatchNorm2d-127          [-1, 288, 14, 14]             576ReLU-128          [-1, 288, 14, 14]               0Conv2d-129          [-1, 128, 14, 14]          36,864BatchNorm2d-130          [-1, 128, 14, 14]             256ReLU-131          [-1, 128, 14, 14]               0Conv2d-132           [-1, 32, 14, 14]          36,864BatchNorm2d-133          [-1, 320, 14, 14]             640ReLU-134          [-1, 320, 14, 14]               0Conv2d-135          [-1, 128, 14, 14]          40,960BatchNorm2d-136          [-1, 128, 14, 14]             256ReLU-137          [-1, 128, 14, 14]               0Conv2d-138           [-1, 32, 14, 14]          36,864BatchNorm2d-139          [-1, 352, 14, 14]             704ReLU-140          [-1, 352, 14, 14]               0Conv2d-141          [-1, 128, 14, 14]          45,056BatchNorm2d-142          [-1, 128, 14, 14]             256ReLU-143          [-1, 128, 14, 14]               0Conv2d-144           [-1, 32, 14, 14]          36,864BatchNorm2d-145          [-1, 384, 14, 14]             768ReLU-146          [-1, 384, 14, 14]               0Conv2d-147          [-1, 128, 14, 14]          49,152BatchNorm2d-148          [-1, 128, 14, 14]             256ReLU-149          [-1, 128, 14, 14]               0Conv2d-150           [-1, 32, 14, 14]          36,864BatchNorm2d-151          [-1, 416, 14, 14]             832ReLU-152          [-1, 416, 14, 14]               0Conv2d-153          [-1, 128, 14, 14]          53,248BatchNorm2d-154          [-1, 128, 14, 14]             256ReLU-155          [-1, 128, 14, 14]               0Conv2d-156           [-1, 32, 14, 14]          36,864BatchNorm2d-157          [-1, 448, 14, 14]             896ReLU-158          [-1, 448, 14, 14]               0Conv2d-159          [-1, 128, 14, 14]          57,344BatchNorm2d-160          [-1, 128, 14, 14]             256ReLU-161          [-1, 128, 14, 14]               0Conv2d-162           [-1, 32, 14, 14]          36,864BatchNorm2d-163          [-1, 480, 14, 14]             960ReLU-164          [-1, 480, 14, 14]               0Conv2d-165          [-1, 128, 14, 14]          61,440BatchNorm2d-166          [-1, 128, 14, 14]             256ReLU-167          [-1, 128, 14, 14]               0Conv2d-168           [-1, 32, 14, 14]          36,864BatchNorm2d-169          [-1, 512, 14, 14]           1,024ReLU-170          [-1, 512, 14, 14]               0Conv2d-171          [-1, 128, 14, 14]          65,536BatchNorm2d-172          [-1, 128, 14, 14]             256ReLU-173          [-1, 128, 14, 14]               0Conv2d-174           [-1, 32, 14, 14]          36,864BatchNorm2d-175          [-1, 544, 14, 14]           1,088ReLU-176          [-1, 544, 14, 14]               0Conv2d-177          [-1, 128, 14, 14]          69,632BatchNorm2d-178          [-1, 128, 14, 14]             256ReLU-179          [-1, 128, 14, 14]               0Conv2d-180           [-1, 32, 14, 14]          36,864BatchNorm2d-181          [-1, 576, 14, 14]           1,152ReLU-182          [-1, 576, 14, 14]               0Conv2d-183          [-1, 128, 14, 14]          73,728BatchNorm2d-184          [-1, 128, 14, 14]             256ReLU-185          [-1, 128, 14, 14]               0Conv2d-186           [-1, 32, 14, 14]          36,864BatchNorm2d-187          [-1, 608, 14, 14]           1,216ReLU-188          [-1, 608, 14, 14]               0Conv2d-189          [-1, 128, 14, 14]          77,824BatchNorm2d-190          [-1, 128, 14, 14]             256ReLU-191          [-1, 128, 14, 14]               0Conv2d-192           [-1, 32, 14, 14]          36,864BatchNorm2d-193          [-1, 640, 14, 14]           1,280ReLU-194          [-1, 640, 14, 14]               0Conv2d-195          [-1, 128, 14, 14]          81,920BatchNorm2d-196          [-1, 128, 14, 14]             256ReLU-197          [-1, 128, 14, 14]               0Conv2d-198           [-1, 32, 14, 14]          36,864BatchNorm2d-199          [-1, 672, 14, 14]           1,344ReLU-200          [-1, 672, 14, 14]               0Conv2d-201          [-1, 128, 14, 14]          86,016BatchNorm2d-202          [-1, 128, 14, 14]             256ReLU-203          [-1, 128, 14, 14]               0Conv2d-204           [-1, 32, 14, 14]          36,864BatchNorm2d-205          [-1, 704, 14, 14]           1,408ReLU-206          [-1, 704, 14, 14]               0Conv2d-207          [-1, 128, 14, 14]          90,112BatchNorm2d-208          [-1, 128, 14, 14]             256ReLU-209          [-1, 128, 14, 14]               0Conv2d-210           [-1, 32, 14, 14]          36,864BatchNorm2d-211          [-1, 736, 14, 14]           1,472ReLU-212          [-1, 736, 14, 14]               0Conv2d-213          [-1, 128, 14, 14]          94,208BatchNorm2d-214          [-1, 128, 14, 14]             256ReLU-215          [-1, 128, 14, 14]               0Conv2d-216           [-1, 32, 14, 14]          36,864BatchNorm2d-217          [-1, 768, 14, 14]           1,536ReLU-218          [-1, 768, 14, 14]               0Conv2d-219          [-1, 128, 14, 14]          98,304BatchNorm2d-220          [-1, 128, 14, 14]             256ReLU-221          [-1, 128, 14, 14]               0Conv2d-222           [-1, 32, 14, 14]          36,864BatchNorm2d-223          [-1, 800, 14, 14]           1,600ReLU-224          [-1, 800, 14, 14]               0Conv2d-225          [-1, 128, 14, 14]         102,400BatchNorm2d-226          [-1, 128, 14, 14]             256ReLU-227          [-1, 128, 14, 14]               0Conv2d-228           [-1, 32, 14, 14]          36,864BatchNorm2d-229          [-1, 832, 14, 14]           1,664ReLU-230          [-1, 832, 14, 14]               0Conv2d-231          [-1, 128, 14, 14]         106,496BatchNorm2d-232          [-1, 128, 14, 14]             256ReLU-233          [-1, 128, 14, 14]               0Conv2d-234           [-1, 32, 14, 14]          36,864BatchNorm2d-235          [-1, 864, 14, 14]           1,728ReLU-236          [-1, 864, 14, 14]               0Conv2d-237          [-1, 128, 14, 14]         110,592BatchNorm2d-238          [-1, 128, 14, 14]             256ReLU-239          [-1, 128, 14, 14]               0Conv2d-240           [-1, 32, 14, 14]          36,864BatchNorm2d-241          [-1, 896, 14, 14]           1,792ReLU-242          [-1, 896, 14, 14]               0Conv2d-243          [-1, 128, 14, 14]         114,688BatchNorm2d-244          [-1, 128, 14, 14]             256ReLU-245          [-1, 128, 14, 14]               0Conv2d-246           [-1, 32, 14, 14]          36,864BatchNorm2d-247          [-1, 928, 14, 14]           1,856ReLU-248          [-1, 928, 14, 14]               0Conv2d-249          [-1, 128, 14, 14]         118,784BatchNorm2d-250          [-1, 128, 14, 14]             256ReLU-251          [-1, 128, 14, 14]               0Conv2d-252           [-1, 32, 14, 14]          36,864BatchNorm2d-253          [-1, 960, 14, 14]           1,920ReLU-254          [-1, 960, 14, 14]               0Conv2d-255          [-1, 128, 14, 14]         122,880BatchNorm2d-256          [-1, 128, 14, 14]             256ReLU-257          [-1, 128, 14, 14]               0Conv2d-258           [-1, 32, 14, 14]          36,864BatchNorm2d-259          [-1, 992, 14, 14]           1,984ReLU-260          [-1, 992, 14, 14]               0Conv2d-261          [-1, 128, 14, 14]         126,976BatchNorm2d-262          [-1, 128, 14, 14]             256ReLU-263          [-1, 128, 14, 14]               0Conv2d-264           [-1, 32, 14, 14]          36,864BatchNorm2d-265         [-1, 1024, 14, 14]           2,048ReLU-266         [-1, 1024, 14, 14]               0Conv2d-267          [-1, 512, 14, 14]         524,288AvgPool2d-268            [-1, 512, 7, 7]               0BatchNorm2d-269            [-1, 512, 7, 7]           1,024ReLU-270            [-1, 512, 7, 7]               0Conv2d-271            [-1, 128, 7, 7]          65,536BatchNorm2d-272            [-1, 128, 7, 7]             256ReLU-273            [-1, 128, 7, 7]               0Conv2d-274             [-1, 32, 7, 7]          36,864BatchNorm2d-275            [-1, 544, 7, 7]           1,088ReLU-276            [-1, 544, 7, 7]               0Conv2d-277            [-1, 128, 7, 7]          69,632BatchNorm2d-278            [-1, 128, 7, 7]             256ReLU-279            [-1, 128, 7, 7]               0Conv2d-280             [-1, 32, 7, 7]          36,864BatchNorm2d-281            [-1, 576, 7, 7]           1,152ReLU-282            [-1, 576, 7, 7]               0Conv2d-283            [-1, 128, 7, 7]          73,728BatchNorm2d-284            [-1, 128, 7, 7]             256ReLU-285            [-1, 128, 7, 7]               0Conv2d-286             [-1, 32, 7, 7]          36,864BatchNorm2d-287            [-1, 608, 7, 7]           1,216ReLU-288            [-1, 608, 7, 7]               0Conv2d-289            [-1, 128, 7, 7]          77,824BatchNorm2d-290            [-1, 128, 7, 7]             256ReLU-291            [-1, 128, 7, 7]               0Conv2d-292             [-1, 32, 7, 7]          36,864BatchNorm2d-293            [-1, 640, 7, 7]           1,280ReLU-294            [-1, 640, 7, 7]               0Conv2d-295            [-1, 128, 7, 7]          81,920BatchNorm2d-296            [-1, 128, 7, 7]             256ReLU-297            [-1, 128, 7, 7]               0Conv2d-298             [-1, 32, 7, 7]          36,864BatchNorm2d-299            [-1, 672, 7, 7]           1,344ReLU-300            [-1, 672, 7, 7]               0Conv2d-301            [-1, 128, 7, 7]          86,016BatchNorm2d-302            [-1, 128, 7, 7]             256ReLU-303            [-1, 128, 7, 7]               0Conv2d-304             [-1, 32, 7, 7]          36,864BatchNorm2d-305            [-1, 704, 7, 7]           1,408ReLU-306            [-1, 704, 7, 7]               0Conv2d-307            [-1, 128, 7, 7]          90,112BatchNorm2d-308            [-1, 128, 7, 7]             256ReLU-309            [-1, 128, 7, 7]               0Conv2d-310             [-1, 32, 7, 7]          36,864BatchNorm2d-311            [-1, 736, 7, 7]           1,472ReLU-312            [-1, 736, 7, 7]               0Conv2d-313            [-1, 128, 7, 7]          94,208BatchNorm2d-314            [-1, 128, 7, 7]             256ReLU-315            [-1, 128, 7, 7]               0Conv2d-316             [-1, 32, 7, 7]          36,864BatchNorm2d-317            [-1, 768, 7, 7]           1,536ReLU-318            [-1, 768, 7, 7]               0Conv2d-319            [-1, 128, 7, 7]          98,304BatchNorm2d-320            [-1, 128, 7, 7]             256ReLU-321            [-1, 128, 7, 7]               0Conv2d-322             [-1, 32, 7, 7]          36,864BatchNorm2d-323            [-1, 800, 7, 7]           1,600ReLU-324            [-1, 800, 7, 7]               0Conv2d-325            [-1, 128, 7, 7]         102,400BatchNorm2d-326            [-1, 128, 7, 7]             256ReLU-327            [-1, 128, 7, 7]               0Conv2d-328             [-1, 32, 7, 7]          36,864BatchNorm2d-329            [-1, 832, 7, 7]           1,664ReLU-330            [-1, 832, 7, 7]               0Conv2d-331            [-1, 128, 7, 7]         106,496BatchNorm2d-332            [-1, 128, 7, 7]             256ReLU-333            [-1, 128, 7, 7]               0Conv2d-334             [-1, 32, 7, 7]          36,864BatchNorm2d-335            [-1, 864, 7, 7]           1,728ReLU-336            [-1, 864, 7, 7]               0Conv2d-337            [-1, 128, 7, 7]         110,592BatchNorm2d-338            [-1, 128, 7, 7]             256ReLU-339            [-1, 128, 7, 7]               0Conv2d-340             [-1, 32, 7, 7]          36,864BatchNorm2d-341            [-1, 896, 7, 7]           1,792ReLU-342            [-1, 896, 7, 7]               0Conv2d-343            [-1, 128, 7, 7]         114,688BatchNorm2d-344            [-1, 128, 7, 7]             256ReLU-345            [-1, 128, 7, 7]               0Conv2d-346             [-1, 32, 7, 7]          36,864BatchNorm2d-347            [-1, 928, 7, 7]           1,856ReLU-348            [-1, 928, 7, 7]               0Conv2d-349            [-1, 128, 7, 7]         118,784BatchNorm2d-350            [-1, 128, 7, 7]             256ReLU-351            [-1, 128, 7, 7]               0Conv2d-352             [-1, 32, 7, 7]          36,864BatchNorm2d-353            [-1, 960, 7, 7]           1,920ReLU-354            [-1, 960, 7, 7]               0Conv2d-355            [-1, 128, 7, 7]         122,880BatchNorm2d-356            [-1, 128, 7, 7]             256ReLU-357            [-1, 128, 7, 7]               0Conv2d-358             [-1, 32, 7, 7]          36,864BatchNorm2d-359            [-1, 992, 7, 7]           1,984ReLU-360            [-1, 992, 7, 7]               0Conv2d-361            [-1, 128, 7, 7]         126,976BatchNorm2d-362            [-1, 128, 7, 7]             256ReLU-363            [-1, 128, 7, 7]               0Conv2d-364             [-1, 32, 7, 7]          36,864BatchNorm2d-365           [-1, 1024, 7, 7]           2,048ReLU-366           [-1, 1024, 7, 7]               0Linear-367                    [-1, 2]           2,050
================================================================
Total params: 6,955,906
Trainable params: 6,955,906
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 294.57
Params size (MB): 26.53
Estimated Total Size (MB): 321.68
----------------------------------------------------------------
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossdef test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossepochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:47.7%, Train_loss:0.725, Test_acc:47.4%,Test_loss:0.708
Epoch: 2, Train_acc:50.2%, Train_loss:0.697, Test_acc:52.7%,Test_loss:0.690
Epoch: 3, Train_acc:56.1%, Train_loss:0.686, Test_acc:59.9%,Test_loss:0.681
Epoch: 4, Train_acc:58.5%, Train_loss:0.679, Test_acc:60.7%,Test_loss:0.675
Epoch: 5, Train_acc:60.9%, Train_loss:0.673, Test_acc:60.1%,Test_loss:0.671
Epoch: 6, Train_acc:61.7%, Train_loss:0.670, Test_acc:62.6%,Test_loss:0.664
Epoch: 7, Train_acc:62.4%, Train_loss:0.665, Test_acc:63.5%,Test_loss:0.659
Epoch: 8, Train_acc:63.0%, Train_loss:0.660, Test_acc:64.8%,Test_loss:0.653
Epoch: 9, Train_acc:64.2%, Train_loss:0.656, Test_acc:65.5%,Test_loss:0.649
Epoch:10, Train_acc:64.9%, Train_loss:0.652, Test_acc:65.6%,Test_loss:0.644
Epoch:11, Train_acc:65.4%, Train_loss:0.649, Test_acc:66.6%,Test_loss:0.641
Epoch:12, Train_acc:65.0%, Train_loss:0.646, Test_acc:66.6%,Test_loss:0.638
Epoch:13, Train_acc:64.8%, Train_loss:0.643, Test_acc:67.5%,Test_loss:0.634
Epoch:14, Train_acc:65.7%, Train_loss:0.641, Test_acc:67.3%,Test_loss:0.633
Epoch:15, Train_acc:65.9%, Train_loss:0.638, Test_acc:67.8%,Test_loss:0.629
Epoch:16, Train_acc:66.3%, Train_loss:0.635, Test_acc:67.6%,Test_loss:0.626
Epoch:17, Train_acc:67.3%, Train_loss:0.632, Test_acc:67.8%,Test_loss:0.624
Epoch:18, Train_acc:67.1%, Train_loss:0.628, Test_acc:68.2%,Test_loss:0.618
Epoch:19, Train_acc:67.3%, Train_loss:0.628, Test_acc:68.9%,Test_loss:0.618
Epoch:20, Train_acc:67.9%, Train_loss:0.624, Test_acc:68.4%,Test_loss:0.614
Done
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

相关文章:

DenseNet算法:口腔癌识别

本文为为🔗365天深度学习训练营内部文章 原作者:K同学啊 一 DenseNet算法结构 其基本思路与ResNet一致,但是它建立的是前面所有层和后面层的密集连接,它的另一大特色是通过特征在channel上的连接来实现特征重用。 二 设计理念 三…...

828华为云征文 | 利用FIO工具测试Flexus云服务器X实例存储性能

目录 一、Flexus云服务器X实例概要 1.1 Flexus云服务器X实例摘要 1.2 产品特点 1.3 存储方面性能 1.4 测评服务器规格 二、FIO工具 2.1 安装部署FIO 2.2 主要性能指标概要 三、进行压测 3.1 测试全盘随机读IO延迟 3.2 测试全盘随机写IO延迟 3.3 测试随机读IOPS 3.4…...

Pikachu-File Inclusion- 本地文件包含

前端每次挑选篮球明星,都会通过get请求,传了文件名,把页面展示出来,由于文件名时前端传给后台;并且查看源码,没有对参数做限制; 尝试直接从前端修改filename 参数; filename../../../../../../…...

linux基础 超级笔记

1.Linux系统的组成 Linux系统内核:提供系统最核心的功能,如软硬件和资源调度。 系统及应用程序:文件、任务管理器。 2.Linux发行版 通过修改内核代码自行集成系统程序,即封装。比如Ubuntu和centos这种。不过基础命令是完全相…...

Python——异常处理机制

Python 异常处理机制 Python异常与异常处理机制针对 Traceback 的解读try-except-else-finallyexcept语句except语句的机制在 except 语句中引用当前被处理的 Python 异常 finally语句finally语句执行后才能抛出未被处理的异常finally中执行return会导致异常丢失 raise 语句rai…...

社群团购中的用户黏性价值:以开源小程序多商户AI智能名片商城源码为例

摘要:本文探讨社群团购中的用户黏性价值,分析其与传统团购网站的区别,并阐述开源小程序多商户AI智能名片商城源码在增强社群团购用户黏性方面可能发挥的作用。 一、引言 在当今的商业环境中,社群团购逐渐成为一种重要的营销模式。…...

基于php的民宿预订管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…...

java 从基础到入门 到架构师所需要学习的路线

java是一种广泛使用的编程语言,可以应用于多种平台和应用程序。下面是一个从基础到入门,再到架构师所要掌握的Java学习路线的详细列举: 学习Java基础知识: 理解面向对象编程的概念,如类、对象、继承、多态等。 学习Ja…...

【吊打面试官系列-MySQL面试题】什么叫视图?游标是什么?

大家好,我是锋哥。今天分享关于【什么叫视图?游标是什么?】面试题,希望对大家有帮助; 什么叫视图?游标是什么? 视图是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增&#…...

项目管理-信息技术发展

1、计算机软硬件 2、计算机网络 1)定义 2)分类:PAN LAN MAN WAN 公用网 专用网 3)网络协议 语法 语义 时许 4)网络标准协议 7层 5)IEEE 802 规范 6)TCP/IP 协议 7) SDN 软件定义网…...

异常处理【C++提升】(基本思想,重要概念,异常处理的函数机制、异常机制,栈解旋......你想要的全都有)

更多精彩内容..... 🎉❤️播主の主页✨😘 Stark、-CSDN博客 本文所在专栏: C系列语法知识_Stark、的博客-CSDN博客 座右铭:梦想是一盏明灯,照亮我们前行的路,无论风雨多大,我们都要坚持不懈。 异…...

基于springboot vue 电影推荐系统

博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...

八、特殊类型异常机制

特殊类型&异常机制 数据类型枚举类型匿名类、单例类和伴生对象匿名类单例类伴生对象 委托模式密封类型异常机制异常的使用异常的处理 数据类型 对于那些只需要保存数据的类型,我们常常需要为其重写toString、equals等函数,针对于这种情况下&#xf…...

虾皮Shopee Android面试题及参考答案

HTTP 状态码有哪些? HTTP 状态码是用以表示网页服务器超文本传输协议响应状态的 3 位数字代码。主要分为五大类: 1xx 信息性状态码:表示服务器正在处理请求,这些状态码是临时的响应,主要用于告诉客户端请求已经被接收,正在处理中。例如,100 Continue 表示客户端应当继续…...

Docker Compose 部署大模型GPU集群:高效分配与管理算力资源

Docker Compose 部署大模型GPU集群:高效分配与管理算力资源 文章目录 Docker Compose 部署大模型GPU集群:高效分配与管理算力资源一 Dockerfile 编写二 Dockerfile 示例三 分配GPU资源1)GPU分配:指定count2)GPU分配&am…...

直立行走机器人技术概述

直立行走机器人技术作为现代机器人领域的重要分支,结合了机械工程、计算机科学、人工智能、传感技术和动态控制等领域的最新研究成果。随着技术的不断发展,直立行走机器人在救灾、医疗、家庭辅助等领域开始发挥重要作用。本文旨在对直立行走机器人的相关…...

【Linux】wsl虚拟机时间和实际时间不符合

本文首发于 ❄️慕雪的寒舍 偶然遇到了这个问题,触发原因是电脑在开启wsl的情况下进入了 休眠 模式,且在无网络情况下几天不使用。 然后开启wsl,发现git log显示最新commit的提交时间是明天,给我吓一跳,然后才发现原来…...

初识算法 · 滑动窗口(1)

目录 前言: 长度最小的子数组 题目解析 算法原理 算法编写 无重复长度的最小字符串 题目解析 算法原理 算法编写 前言: 本文开始,介绍的是滑动窗口算法类型的题目,滑动窗口本质上其实也是双指针,但是呢&#…...

nginx和gateway的关系和区别

在技术选型时,选择 Nginx 和 Spring Cloud Gateway(或简称为 Gateway)主要取决于具体应用场景和技术需求。下面是两者的一些关键差异和适用场景。 一、Nginx 概念 Nginx 是一个高性能的 Web 服务器和反向代理服务器,常被用作静…...

【算法笔记】滑动窗口算法原理深度剖析

【算法笔记】滑动窗口算法原理深度剖析 🔥个人主页:大白的编程日记 🔥专栏:算法笔记 文章目录 【算法笔记】滑动窗口算法原理深度剖析前言一.长度最小的子数组1.1题目1.2思路分析1.3算法流程1.4正确性证明1.5代码实现 二.无重复…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...