当前位置: 首页 > news >正文

【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速...

【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速…

【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速…


文章目录

  • 【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速...
  • 前言
  • 1. PyTorch 常用库和模块
  • 2. 张量操作(Tensor)
    • 2.1 创建张量
    • 2.2 张量的属性
    • 2.3 张量的操作
    • 2.4 张量与 NumPy 的转换
  • 3. 自动求导(Autograd)
    • 3.1 自动求导的基本操作
    • 3.2 停止梯度追踪
    • 3.3 计算图与梯度累积
  • 4. 神经网络模块(torch.nn)
    • 4.1 定义神经网络模型
    • 4.2 常用层
    • 4.3 损失函数
  • 5. 优化器(torch.optim)
    • 5.1 常用优化器
    • 5.2 使用优化器
  • 6. 数据加载与处理(torch.utils.data)
    • 6.1 Dataset 类
    • 6.2 DataLoader 类
  • 7. GPU加速
    • 7.1 检查是否支持 GPU
    • 7.2 将模型和张量迁移到 GPU


欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!

前言

PyTorch 是一个非常流行的深度学习框架,提供了灵活和易用的 API,支持张量计算、自动求导、构建神经网络、GPU 加速等。下面是 PyTorch 常用的语法和函数的全面介绍,涵盖张量操作、神经网络构建、优化器、自动求导、数据处理等。

1. PyTorch 常用库和模块

  • 1.torch:核心模块,包含张量操作、数学计算、自动求导等功能。
  • 2.torch.nn:神经网络相关的模块,提供各种层(如卷积、全连接等)和常用损失函数。
  • 3.torch.optim:优化器模块,用于定义优化算法,如 SGD、Adam 等。
  • 4.torch.autograd:自动求导模块,用于实现自动反向传播计算。
  • 5.torch.utils.data:数据处理模块,包含 DatasetDataLoader,用于处理和加载数据集。

2. 张量操作(Tensor)

张量是 PyTorch 的核心数据结构,类似于 NumPy 的数组,但可以在 GPU 上运行。

2.1 创建张量

  • 通过 torch.tensor() 创建张量:
import torch
a = torch.tensor([1, 2, 3])
print(a)  # tensor([1, 2, 3])
  • 创建随机数张量:
rand_tensor = torch.rand(3, 4)  # 3x4的随机数张量
print(rand_tensor)

2.2 张量的属性

  • shapedtypedevice
tensor = torch.rand(3, 4)
print(tensor.shape)  # 输出张量的形状
print(tensor.dtype)  # 数据类型
print(tensor.device) # 设备(CPU or GPU)

2.3 张量的操作

  • 张量的数学运算,如加减乘除、矩阵乘法:
a = torch.tensor([1, 2])
b = torch.tensor([3, 4])
print(a + b)  # 加法
print(a * b)  # 乘法
print(a @ b.T)  # 矩阵乘法
  • 维度变换:view()reshape()transpose() 用于改变张量形状:
x = torch.randn(4, 3)
y = x.view(3, 4)  # 改变形状
print(y)
  • 索引和切片:
x = torch.tensor([[1, 2], [3, 4], [5, 6]])
print(x[0])       # 选择第一行
print(x[:, 1])    # 选择第二列
print(x[1:, :])   # 选择从第二行开始的所有行

2.4 张量与 NumPy 的转换

  • torch.Tensor 转换为 numpy.array
a = torch.ones(5)
b = a.numpy()
print(b)
  • numpy.array 转换为 torch.Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
print(b)

3. 自动求导(Autograd)

PyTorch 中的 autograd 模块支持自动求导功能,即反向传播。

3.1 自动求导的基本操作

  • requires_grad 标志用于启用对张量的梯度跟踪:
x = torch.tensor([2.0, 3.0], requires_grad=True)
y = x ** 2  # y = [4, 9]
y.backward(torch.tensor([1.0, 1.0]))  # 计算梯度
print(x.grad)  # 输出 x 的梯度

3.2 停止梯度追踪

在推理阶段或者某些计算中,我们不需要计算梯度,可以使用 torch.no_grad()detach()

  • 使用 no_grad()
with torch.no_grad():y = model(x)
  • 使用 detach()
x = torch.tensor([1.0], requires_grad=True)
y = x ** 2
z = y.detach()  # z 不会计算梯度

3.3 计算图与梯度累积

  • 反向传播时,PyTorch 会默认将梯度累积到 grad 属性中,因此在每次反向传播之前,需要清零梯度:
optimizer.zero_grad()
loss.backward()
optimizer.step()

4. 神经网络模块(torch.nn)

PyTorch 提供了 torch.nn 模块,用于定义神经网络的层和损失函数。

4.1 定义神经网络模型

torch.nn.Module 是所有神经网络的基类,通常需要在类的 __init__ 方法中定义网络的层,在 forward() 方法中定义前向传播过程。

  • 简单的前馈神经网络示例:
import torch.nn as nnclass SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(10, 50)self.fc2 = nn.Linear(50, 1)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return xmodel = SimpleNet()

4.2 常用层

  • 全连接层torch.nn.Linear 用于实现全连接层。
fc = nn.Linear(in_features=10, out_features=5)
  • 卷积层torch.nn.Conv2d 用于实现二维卷积。
conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)
  • 激活函数
    ReLU:torch.nn.ReLU()
    Sigmoid:torch.nn.Sigmoid()
    Tanh:torch.nn.Tanh()

  • 池化层:torch.nn.MaxPool2dtorch.nn.AvgPool2d 用于池化操作。

pool = nn.MaxPool2d(kernel_size=2, stride=2)

4.3 损失函数

PyTorch 提供了多种常用的损失函数,如均方误差(MSE)、交叉熵损失(CrossEntropy)。

  • 均方误差(MSE)损失函数:
loss_fn = nn.MSELoss()
loss = loss_fn(predicted_output, target_output)
  • 交叉熵损失函数:
loss_fn = nn.CrossEntropyLoss()
loss = loss_fn(predictions, labels)

5. 优化器(torch.optim)

PyTorch 的 torch.optim 模块提供了多种优化算法,用于更新模型的参数。

5.1 常用优化器

  • 随机梯度下降(SGD):
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
  • Adam 优化器:
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

5.2 使用优化器

  • 在每个训练迭代中,使用优化器更新模型参数的典型步骤:
optimizer.zero_grad()  # 清空梯度
loss.backward()  # 反向传播
optimizer.step()  # 更新参数

6. 数据加载与处理(torch.utils.data)

6.1 Dataset 类

torch.utils.data.Dataset 是数据集的抽象类,用户可以通过继承 Dataset 类来自定义数据集。

  • 自定义数据集:
from torch.utils.data import Datasetclass CustomDataset(Dataset):def __init__(self, data, labels):self.data = dataself.labels = labelsdef __len__(self):return len(self.data)def __getitem__(self, index):return self.data[index], self.labels[index]

6.2 DataLoader 类

torch.utils.data.DataLoader 用于将 Dataset 打包成可迭代的数据批次,并支持多线程加载。

  • 使用 DataLoader
from torch.utils.data import DataLoaderdataset = CustomDataset(data, labels)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
for batch in dataloader:inputs, targets = batch

7. GPU加速

PyTorch 提供了对 GPU 的支持,可以使用 CUDA 设备加速计算。

7.1 检查是否支持 GPU

print(torch.cuda.is_available())

7.2 将模型和张量迁移到 GPU

  • 将张量迁移到 GPU:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tensor = tensor.to(device)
  • 将模型迁移到 GPU:
model = model.to(device)

通过这份全面的 PyTorch 语法和函数介绍,你可以更好地掌握 PyTorch 的基本用法以及常用的深度学习相关功能。

相关文章:

【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速...

【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速… 【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速… 文章目录 【PyTorch学习-1】张量操作|自动求导|神经网络模块|优化器|数据加载与处理|GPU 加速...前言…...

Leecode热题100-560.和为k的子数组

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例 1: 输入:nums [1,1,1], k 2 输出:2示例 2: 输入:nums [1,2,3], k…...

Mac 卸载 IDEA 流程

1、现在应用程序中删除Idea 2、进入Library目录 cd /Users/zhengzhaoxiang/Library 3、删除IntelliJIdea2023.3(根据自己的版本而定)记得进去看下是否删除干净了 rm -rf Logs/JetBrains/IntelliJIdea2023.3 rm -rf Preferences/com.jetbrains.intel…...

vue3 antdv3/4 Modal显示一个提示,内容换行显示。

1、官网地址: Ant Design Vue — An enterprise-class UI components based on Ant Design and Vue.js 2、显示个信息: Modal.info({title: This is a notification message,content: h(div, {}, [h(p, some messages...some messages...),h(p, some …...

Jgit的使用

Jgit的使用 文章目录 Jgit的使用一,git操作的对应代码1.1 查看操作1.1.1 打开仓库1.1.3 获取状态信息 1.2 添加操作1.2.1 初始化本地仓库1.2.2 创建一个新文件并写入内容1.2.3 添加指定(所有)文件到暂存区1.2.4 提交操作1.2.5 连接并推送到远…...

SQL Server—约束和主键外键详解

SQL Server—约束和主键外键详解 约束和主键外键 主键 和 外键 -- 主键: 关系型数据库中一条记录有若干个属性,若其中某一个属性能够位置标识这条记录,这个属性就可以设置为表的主键,主键是确定一条记录的唯一标识,有可能作为主键…...

信息学奥赛复赛复习14-CSP-J2021-03网络连接-字符串处理、数据类型溢出、数据结构Map、find函数、substr函数

PDF文档回复:20241007 1 P7911 [CSP-J 2021] 网络连接 [题目描述] TCP/IP 协议是网络通信领域的一项重要协议。今天你的任务,就是尝试利用这个协议,还原一个简化后的网络连接场景。 在本问题中,计算机分为两大类:服务机&#x…...

Allegro如何合并同名网络铜皮操作指导

Allegro如何合并同名网络铜皮操作指导 Allegro可以将同名网络的铜皮合并起来,如下图,需要把下面两块铜皮合并成一块铜皮 具体操作如下 选择Shape 选择merge shapes Find选择shapes 点击其中一块铜皮,会被亮起来 再点击另外一块铜皮 两块铜皮…...

【探测器】线阵相机中的 TDI 技术

【探测器】线阵相机中的 TDI 技术 1.背景2.TDI相机3.场景应用 1.背景 TDI 即Time Delay Integration时间延迟积分。 TDI相机是线阵相机的一种特殊类型,带有独特的时间延迟积分(TDI)技术。 换句话说,TDI相机是线阵相机的一个高级版…...

k8s 之安装metrics-server

作者:程序那点事儿 日期:2024/01/29 18:25 metrics-server可帮助我们查看pod的cpu和内存占用情况 kubectl top po nginx-deploy-56696fbb5-mzsgg # 报错,需要Metrics API 下载 Metrics 解决 wget https://github.com/kubernetes-sigs/metri…...

java学习-idea编辑器基础使用设置

首先打开电脑中的idea编辑器,点击头部:File按钮 → Settings… 打开设置界面; 设置idea的主题 设置idea代码注释的字体颜色 设置idea编辑器的字体和字体大小 设置idea通过提示回车自动导入包 设置idea输入忽略大小写进行提示...

PDSCH(物理下行共享信道)简介

文章目录 PDSCH(物理下行共享信道)简介1. Transport block CRC attachment2. LDPC base graph selection3. Code block segmentation And Code Block CRC Attachment4. Channel Coding5. Rate Matching6. Code Block Concatenation7. Scrambling8. Modul…...

hutool bug

Hutool参考文档 不用随便升级版本 版本5.8 1: 不要用 ReflectUtil.newInstance(cName); * 和spring 部分框架整合 ,子类转换为父类或者接口失败,报转换失败的错误 https://gitee.com/dromara/hutool/issues/I18NCR?skip_mobiletrue 改成使…...

69.x的平方根 367.完全有效的平方数

题目:69. x 的平方根 - 力扣(L69eetCode) 经典平方根问题,用二分法慢慢逼近找开方值,注意mid*mid要用long long值,不然会溢出 class Solution { public:int mySqrt(int x) {int left 0; int right x;int ans -1; w…...

Android Automotive(一)

目录 什么是Android Automotive Android Automotive & Android Android Automotive 与 Android Auto 什么是Android Automotive Android Automotive 是一个基础的 Android 平台,它能够运行预装的车载信息娱乐系统(IVI)应用程序,以及可选的二方和三方 Android 应用程…...

命令设计模式

简介 命令模式(Command Pattern)是对命令的封装,每一个命令都是一个操作:请求方发出请求要求执行一个操作;接收方收到请求,并执行操作。命令模式解耦了请求方和接收方,请求方只需请求执行命令&…...

探索智能新境界:最好用的AI工具盘点

你用过最好用的AI工具有哪些? 在人工智能技术飞速发展的今天,AI工具正逐渐成为我们工作和生活中不可或缺的助手。它们不仅提高了效率,还为我们提供了创新的解决方案。作为一名对AI充满热情的用户,我有幸体验了许多优秀的AI工具。…...

【Redis】持久化(下)-- AOF

文章目录 AOF概念如何使用AOFAOF工作流程命令写入演示文件同步策略 AOF的重写机制概念触发重写机制AOF重写流程 启动时数据恢复混合持久化总结 AOF 概念 AOF持久化:以独立日志的方式记录每次的写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的.AOF的主要作用是解决…...

用Arduino单片机制作一个简单的音乐播放器

Arduino单片机上有多个数字IO针脚,可以输出数字信号,用于驱动发声器件,从而让它发出想要的声音。蜂鸣器是一种常见的发声器件,通电后可以发出声音。因此,单片机可以通过数字输出控制蜂鸣器发出指定的声音。另外&#x…...

软件工程相关

1.软件过程模型(重要) 1.1.瀑布模型 只适合需求明确的项目严格串行化,很长时间才能看到结果。严格区分阶段,每个阶段因果紧密相连,且要求每个阶段一次性解决该阶段的任务 1.2.原型模型(构造简易模型确定…...

速盾:游戏加速下载可以用cdn吗?

随着互联网的快速发展,游戏下载已经成为许多游戏玩家的常见需求。然而,由于游戏文件体积庞大,下载速度经常成为制约因素之一。为了解决这个问题,许多玩家开始寻找可以加速游戏下载速度的方法。其中一种常见的方法是使用CDN&#x…...

每日新闻掌握【2024年9月25日 星期三】

2024年9月25日 星期三 农历八月廿三 大公司/大事件 央行降低存量房贷利率,二套房贷最低首付比例下调到15% 国务院新闻办公室9月24日上午举行新闻发布会,中国人民银行、金融监管总局、中国证监会主要负责人介绍了金融支持经济高质量发展有关情况。多项重…...

8. Bug 与 Error

计算机程序中的缺陷通常被称为 bug。把它们想象成偶然爬进我们工作中的小东西,会让程序员感觉良好。当然,实际上是我们自己把它们放进去的。 如果程序是思想的结晶,我们可以将错误大致分为思想混乱造成的错误和将思想转化为代码时引入错误造成…...

论文 | Model-tuning Via Prompts Makes NLP Models Adversarially Robust

这篇论文研究了使用提示 (Prompting) 方法微调预训练语言模型,以提高其在对抗样本攻击下的鲁棒性。论文的主要贡献如下: 1.MVP 比 MLP-FT 更鲁棒: 论文比较了 MVP (Model-tuning Via Prompts) 和传统的 MLP-FT (Fine-tuning with an MLP head…...

828华为云征文|华为云Flexus云服务器X实例部署 即时通讯IM聊天交友软件——高性能服务器实现120W并发连接

营运版的即时通讯IM聊天交友系统:特点可发红包,可添加多条链接到用户网站和应用,安卓苹果APPPC端H5四合一 后端开发语言:PHP, 前端开发语言:uniapp混合开发。 集安卓苹果APPPC端H5四合一APP源码&#xff0…...

超好用的element的el-pagination分页组件二次封装-附源码及讲解

前言:在很多后台管理系统开发时总会有很多分页组件的使用,如果我们每次都用elementui官网的el-pagination去写的话,调整所有分页的样式就会很麻烦,而且页面内容也会很累赘繁琐。 讲解一个我经常使用的二次封装el-pagination组件&…...

【AIGC】通过OpenAi Canvas修改论文(附40条论文优化指令)

目录 1、用ChatGPT优化论文大纲和逻辑2、用ChatGPT充实论文内容3、用ChatGPT寻找案例和数据4、用ChatGPT检查语法和字词错误5、如何直接使用ChatGPT4o、o1、OpenAI Canvas6、OpenAI Canvas增强了啥?7、编程功能增强 在刚开始撰写学术论文时,很多小伙伴感…...

Kubernetes Pod详解

目录 1. Pod 介绍 1.1 Pod 结构 1.2 Pod 定义 2. Pod 配置 2.1 基本配置 2.2 镜像拉取 2.3 启动命令 2.4 环境变量 2.5 端口设置 2.6 资源配额 3. Pod 生命周期 3.1 创建和终止 3.2 初始化容器 3.3 钩子函数 3.4 容器探测 3.5 重启策略 4. Pod 调度 4.1 定向调…...

Vue2电商项目(七)、订单与支付

文章目录 一、交易业务Trade1. 获取用户地址2. 获取订单信息 二、提交订单三、支付1. 获取支付信息2. 支付页面--ElementUI(1) 引入Element UI(2) 弹框支付的业务逻辑(这个逻辑其实没那么全)(3) 支付逻辑知识点小总结 四、个人中心1. 搭建二级路由2. 展示动态数据(1). 接口(2).…...

你知道U盘怎么加密吗?

1、使用Windows BitLocker: 适用于Windows 10/11专业版及以上版本。 插入U盘,右键点击U盘图标,选择“启用BitLocker”。 设置密码,并选择加密选项,点击“开始加密”。 2、使用Mac的Disk Utility: 适用…...