当前位置: 首页 > news >正文

【JavaEE】【多线程】Thread类讲解

目录

  • Thread构造方法
  • Thread 的常见属性
  • 创建一个线程
  • 获取当前线程引用
  • 终止一个线程
    • 使用标志位
    • 使用自带的标志位
  • 等待一个线程
  • 线程休眠
  • 线程状态
  • 线程安全
    • 线程不安全原因总结
    • 解决由先前线程不安全问题例子

Thread构造方法

方法说明
Thread()创建线程对象
Thread(Runnable target)使用 Runnable 对象创建线程对象
Thread(String name)创建线程对象,并命名(当前线程名)
Thread(Runnable target, String name)使用 Runnable 对象创建线程对象,并命名
Thread(ThreadGroup group,Runnable target)线程可以被用来分组管理,分好的组即为线程组

Thread 的常见属性

属性获取方法
IDgetId()
名称getName()
状态getState()
优先级getPriority()
是否后台线程isDaemon()
是否存活isAlive()
是否被中断isInterrupted()

解释:

  • ID 是线程的唯一标识,不同线程不会重复,但是这里的id是Java给的id,不是前面PCB中说的id。
  • 名称在各种调试工具用到,前面构造方法给的名称就是这个。
  • 状态表示线程当前所处的一个情况。
  • 优先级高的线程理论上来说更容易被调度到,但是这个是系统微观程度上的,很难感知到。
  • 关于后台线程,需要记住一点:JVM会在一个进程的所有非后台线程(前台线程)结束后,才会结束运行,而后台线程不影响Java进程的结束,可以在start()调用前使用setDaemon(true)来设置线程为后台线程。
  • 是否存活,即简单的理解,为 run 方法是否运行结束了

创建一个线程

在前一篇文章中就介绍了相关操作,在这简单提一下一定要使用线程变量名.start();创建一个新线程,start()方法是Java提供的API来调用系统中创建线程的方法。而run()方法是这个线程要干的事情,在线程创建好之后自动就会调用。
每个线程对象只能start一次

获取当前线程引用

方法说明
public static Thread currentThread();返回当前线程对象的引用

是静态方法直接使用Thread.currentThread();就可以获取到当前的线程引用。

终止一个线程

在Java中终止一个线程的思路就是让线程中的run()方法尽快结束。

使用标志位

由于线程迟迟不结束大多是因为里面有循环语句,我们就可以使用一个成员变量来控制循环的结束。
不能使用局部变量定义在main方法内,因为虽然lambda表达式可以捕获上层变量,但是这个变量不可以进行修改。

public class Demo {private static boolean isQuit = false;public static void main(String[] args) {Thread thread = new Thread(() ->{while(isQuit) {//具体操作  }});thread.start();isQuit = true;}
}

使用自带的标志位

方法说明
public void interrupt()中断对象关联的线程,如果线程正在阻塞,则以异常方式通知,否则设置标志位
public static boolean interrupted()判断当前线程的中断标志位是否设置,调用后清除标志位,不建议使用,静态方法为所有线程共用的
public boolean isInterrupted()判断对象关联的线程的标志位是否设置,调用后不清除标志位

Java中自带了标志位来标志是否结束循环。先使用Thread.currentThread()获取到当前线程,在.isInterrupted()获取标志位。然后再主进程中调用interrupte()方法来将标志位值修改为true。

public class Demo {public static void main(String[] args) {Thread thread = new Thread(() ->{while (!Thread.currentThread().isInterrupted()) {//操作}});thread.start();thread.interrupt();}
}

但是如果在线程中有捕获InterruptedException异常的语句,那么会在调用interrupte()同时捕获到该异常,并且消除标志位。
此时我们就可以在catch语句中自己选择是将线程结束还是进行其它操作。

public class Demo {public static void main(String[] args) {Thread thread = new Thread(() ->{while (!Thread.currentThread().isInterrupted()) {try {Thread.sleep(1000);} catch (InterruptedException e) {//1.不操作继续执行线程e.printStackTrace();//2.结束线程break;//3.进行其它操作}}});thread.start();thread.interrupt();}
}

等待一个线程

方法说明
public void join()等待线程结束
public void join(long millis)等待线程结束,最多等 millis 毫秒
public void join(long millis, int nanos)等待线程结束,最多等 millis 毫秒,但可以更高精度

在主线程中调用线程对象.join();就是等待线程对象执行完再执行主线程。
调用细节:

  • 调用线程对象.join();就会让该线程执行完才继续执行外面的线程,如果线程对象对应的线程一直不结束那么外面的线程就会一直等(死等)
  • 调用线程对象.join(long millis);就会在该线程执行millis毫秒后执行外面的线程。
  • 如果遇到调用join前线程已经结束,外面的线程不会陷入等待。

如下代码执行结果就是先打印5个thread线程,最后在打印main线程:

public class Demo6 {public static void main(String[] args) throws InterruptedException {Thread thread = new Thread(() -> {for(int i = 0; i < 5; i++) {System.out.println("thread线程");}});       thread。start();thread.join();System.out.println("main线程");}
}

线程休眠

方法说明
public static void sleep(long millis) throws InterruptedException休眠当前线程 millis毫秒
public static void sleep(long millis, int nanos) throws InterruptedException可以更高精度的休眠

在系统让线程休眠sleep中的参数毫秒后,线程会被唤醒从阻塞状态变成就绪状态,但不会马上执行,涉及到调度开销。所以实际使用的时间是大于sleep中的参数的。
并且在Windows和Linux系统上达到毫秒级误差。

线程状态

在操作系统里面进程和线程最重要的状态就是:就绪状态和阻塞状态。
在Java中又给线程又给线程赋予了一些其他状态。
线程的状态是一个枚举类型 Thread.State。

状态说明
newThread对象已经创建,但是start方法没有调用
terminatedThread对象还在,但是内核中线程已将结束了
Runnable就绪状态,线程已经在CPU上执行或者在CPU上等待执行
timed_waiting由于sleep这种固定时间产生的阻塞
waiting由于wait这种不固定时间产生的阻塞
blocked由于锁竞争产生的阻塞

线程安全

线程安全的简单说法就是符不符合预期:如果多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的。

例如以下代码:
我们的预期结果是10000,但是其实每次的结果都是不一样的,这种就是线程不安全。

public class Demo {private static int ret;public static void main(String[] args) throws InterruptedException {Thread thread1 = new Thread(() -> {for (int i = 0; i < 5000; i++) {ret++;}});Thread thread2 = new Thread(() -> {for (int i = 0; i < 5000; i++) {ret++;}});thread1.start();thread2.start();thread1.join();thread2.join();System.out.println(ret);;}
}

就以上诉代码例子来讲解出现线程不安全的原因。

在CPU上实现自增操作主要有三步:

  1. 将数据给到CPU的寄存器中;
  2. 数据在寄存器中加1;
  3. 将数据返回到内存中。

就以一个thread1和一个thread2来说,每个线程都进行这三步操作,但是线程在CPU上又是随机调用的,这就相当于有六个位置随机坐,相当于排列组合的A66,当数据作为不同线程的开始值进入寄存器时就相当于两次自增只执行了一次。

但是线程调用就更加复杂了,线程数量不一样,顺序不一样,这就相当于有无数种可能了,所以结果是不可控的,就导致了线程不安全的情况。

线程不安全原因总结

在介绍线程不安全原因之前先介绍一个概念:原子性。

原子性:简单来讲就是执行一段代码连续执行完不被其他线程干扰。举个例子:

我们把一段代码想象成一个房间,每个线程就是要进入这个房间的人。如果没有任何机制保证,A进入房间之后,还没有出来;B 是不是也可以进入房间,打断 A 在房间里的隐私。这个就是不具备原子性的。

那我们应该如何解决这个问题呢?是不是只要给房间加一把锁,A 进去就把门锁上,其他人是不是就进不来了。这样就保证了这段代码的原子性了。

有时也把这个现象叫做同步互斥,表示操作是互相排斥的。

原因总结:

  • 操作系统调度线程是随机的(抢占式执行);
  • 多个线程对同一个变量进行修改;
  • 修改操作不是原子性的;
  • 内存可见性问题;
  • 指令重排序问题。

解决由先前线程不安全问题例子

要解决就要从原因入手:

  • 操作系统随机调度是操作系统带来的解决不了;
  • 多个线程对一个变量修改,有些可以规避,但有些根据需求无法规避。
  • 将操作改为原子性,可以通过synchronized关键字 加锁操作来实现。

语法:

synchronized(变量){
//修改操作
}

()括号内的变量不重要,作用是区分加锁对象是否一样,如果对同一个对象加锁,那么两个操作就会产生“blocked”锁竞争阻塞问题,后一个线程就会等到前一个线程解锁再执行。
进入左大括号 ‘{’ 就是加锁,出了右大括号 ‘}’ 就是解锁。

对上诉代码进行如下修改,就会出现预期结果10000:

public class Demo7 {private static int ret;public static void main(String[] args) throws InterruptedException {Object block = new Object();Thread thread1 = new Thread(() -> {for (int i = 0; i < 5000; i++) {synchronized (block){ret++;}}});Thread thread2 = new Thread(() -> {for (int i = 0; i < 5000; i++) {synchronized (block){ret++;}}});thread1.start();thread2.start();thread1.join();thread2.join();System.out.println(ret);;}
}

synchronized还可以修饰方法(静态方法也行)。

  • synchronized修饰实例方法:
class Counter{public int ret;public void increase1() {synchronized (this) {ret++;}}//简化版本synchronized public void increase2() {ret++;}
}
  • synchronized修饰静态方法:相当于修饰这个类
class Counter{private static int ret2;public static void increase3() {synchronized (Counter.class) {ret2++;}}//简化版本synchronized public static void increase4() {ret2++;}
}

相关文章:

【JavaEE】【多线程】Thread类讲解

目录 Thread构造方法Thread 的常见属性创建一个线程获取当前线程引用终止一个线程使用标志位使用自带的标志位 等待一个线程线程休眠线程状态线程安全线程不安全原因总结解决由先前线程不安全问题例子 Thread构造方法 方法说明Thread()创建线程对象Thread(Runnable target)使用…...

硬件面试(一)

网上别人的硬件面试记录&#xff0c;察漏补缺&#xff1a; 1.骄傲容易被打脸&#xff01; 励磁电感和谐振电感的比值K大小有什么含义: 励磁电感和谐振电感的比值 KKK 通常用来衡量电路的特性。当 KKK 较大时&#xff0c;表示励磁电感相对于谐振电感较强&#xff0c;可能导致…...

9-贪心算法

PDF文档下载&#xff1a;LeetCode-贪心算法-java 参考&#xff1a;代码随想录 题目分类大纲如下&#xff1a; 贪心算法理论基础 什么是贪心&#xff1f; 贪心的本质是选择每一阶段的局部最优&#xff0c;从而达到全局最优。 贪心的套路&#xff08;什么时候用贪心&#xff…...

前端编程艺术(3)---JavaScript

目录 1.JavaScript 1.输出 2.变量和数据类型 3.运算符 4.数组 5.函数 6.面向对象 7.ES6面向对象 2.BOM 1.document对象 3.DOM 4.JSON 1.JavaScript JavaScript是一种脚本编程语言&#xff0c;通常用于为网页增加交互性和动态效果。它是一种高级语言&#xff…...

动态规划算法题目练习——91.解码方法

1.题目解析 题目来源&#xff1a;91.解码方法——力扣 测试用例 2.算法原理 基础版本 1.状态表示 由于题目只要求返回第i个位置的可能情况&#xff0c;则只需要开辟n(ns.size())个大小的dp表即可 2.状态转移方程 题目可知第i个位置可以单独解码也可以与前一个位置组合解码&am…...

每天一个数据分析题(四百九十二)- 主成分分析与因子分析

在因子分析中&#xff0c;因子载荷矩阵是用来表示&#xff08; &#xff09;。 A. 变量和因子之间的关系 B. 样本和因子之间的关系 C. 变量和样本之间的关系 D. 因子和因子之间的关系 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案…...

Linux shell编程学习笔记86:sensors命令——硬件体温计

0 引言 同事们使用的Windows系统电脑&#xff0c;经常莫名其妙地装上了鲁大师&#xff0c;鲁大师的一项功能是显示系统cpu等硬件的温度。 在Linux系统中&#xff0c;sensors命令可以提供类似的功能。 1 sensors命令 的安装和配置 1.1 sensors命令 的安装 要使用sensors命…...

基于SSM车位租赁系统【附源码】

基于SSM车位租赁系统 效果如下&#xff1a; 注册页面 首页展示 车位租赁订单展示 车位列表页面 公告信息管理页面 公告类型管理界面 研究背景 随着经济的持续增长和城市化进程的加速&#xff0c;土地资源变得日益紧缺&#xff0c;停车难问题已成为许多城市面临的共同挑战。随…...

JAVA开源项目 新生报到网站 计算机毕业设计

本文项目编号 T 002 &#xff0c;文末自助获取源码 \color{red}{T002&#xff0c;文末自助获取源码} T002&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 提…...

QT将QBytearray的data()指针赋值给结构体指针变量后数据不正确的问题

1、问题代码 #include <QCoreApplication>#pragma pack(push, 1) typedef struct {int a; // 4字节float b; // 4字节char c; // 1字节int *d; // 8字节 }testStruct; #pragma pack(pop)#include <QByteArray> #include <QDebug>int main() {testStruct …...

修改银河麒麟操作系统V10(SP1)网卡名称为ethx

修改银河麒麟桌面操作系统V10&#xff08;SP1&#xff09;网卡名称为ethx 步骤一&#xff1a;查看当前网卡信息步骤二&#xff1a;修改GRUB配置文件步骤三&#xff1a;更新GRUB配置步骤四&#xff1a;编辑网络接口文件步骤五&#xff1a;重启机器 &#x1f496;The Begin&#…...

MySQL多表查询:标量子查询

先看我的emp表结构 emp表 子查询基本语法 select * from t1 where column1 (select column1 from t2);例子1&#xff1a;查询"销售部" 的所有员工信息 这个可以先拆解为两个 a.查询"销售部"的部门ID select id from dept where name 销售部; b. 根…...

C++学习笔记----8、掌握类与对象(六)---- 操作符重载(1)

经常在对象上执行如相加&#xff0c;比较&#xff0c;文件传输等操作。例如&#xff0c;spreadsheet只有在可以在上面执行自述运算才有用&#xff0c;比如对整行的单元格求和。所有这些都可以通过重载操作符来完成。 许多人发现操作符重载的语法复杂而令人迷惑。至少一开始是这…...

Ascend C 自定义算子开发:高效的算子实现

Ascend C 自定义算子开发&#xff1a;高效的算子实现 在 Ascend C 平台上&#xff0c;开发自定义算子能够充分发挥硬件的性能优势&#xff0c;帮助开发者针对不同的应用场景进行优化。本文将以 AddCustom 算子为例&#xff0c;介绍 Ascend C 中自定义算子的开发流程及关键技术…...

面向对象技术——设计模式

目录 层次结构 具体设计模式分类 创建型模式&#xff08;处理创建对象&#xff09; 结构型模式&#xff08;处理类和对象的组合&#xff09; 行为型模式&#xff08;描述类或者对象的交互行为&#xff09; 创建型设计模式 ​编辑 结构型设计模式 行为型设计模式​编辑 …...

2024 Mysql基础与进阶操作系列之MySQL触发器详解(20)作者——LJS[你个小黑子这都还学不会嘛?你是真爱粉嘛?真是的 ~;以后请别侮辱我家鸽鸽]

欢迎各位彦祖与热巴畅游本人专栏与博客 你的三连是我最大的动力 以下图片仅代表专栏特色 [点击箭头指向的专栏名即可闪现] 专栏跑道一 ➡️ MYSQL REDIS Advance operation 专栏跑道二➡️ 24 Network Security -LJS ​ ​ ​ 专栏跑道三 ➡️HCIP&#xff1b;H3C-SE;CCIP——…...

找不到concrt140.dll如何修复,快来试试这6种解决方法

concrt140.dll是微软Visual C 2015 Redistributable Package中的一个重要动态链接库文件&#xff0c;它在许多Windows应用程序中扮演着关键角色。本文将详细探讨concrt140.dll丢失的原因、影响、解决方法以及预防措施&#xff0c;帮助用户更好地理解和应对这一问题。 一、什么是…...

年会工作会议会务报名签到小程序开源版开发

年会工作会议会务报名签到小程序开源版开发 会议管理微信小程序&#xff0c;对会议流程、开支、数量、标准、供应商提供一种标准化的管理方法。以达到量化成本节约&#xff0c;风险缓解和服务质量提升的目的。适用于大型论坛、峰会、学术会议、政府大会、合作伙伴大会、经销商…...

UE C++ 实时加载模型的总结

一.总体思路&#xff1a; 如果实时加载UE模型&#xff0c;需要先将之前的模型删除。再生成出来&#xff0c;放在根节点&#xff0c;保持相对位置&#xff0c;相对的俯仰角。 void AAirForce::LoadWeapon(int ID, int Type, double X, double Y, double Z) {//m_weaponMap.Emp…...

实施威胁暴露管理、降低网络风险暴露的最佳实践

随着传统漏洞管理的发展&#xff0c;TEM 解决了因攻击面扩大和安全工具分散而产生的巨大风险。 主动式 TEM 方法优先考虑风险并与现有安全工具无缝集成&#xff0c;使组织能够在威胁被有效利用之前缓解威胁。 为什么威胁暴露管理 (TEM) 在现代网络安全策略中变得至关重要&…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...