【进阶OpenCV】 (4)--图像拼接
文章目录
- 图像拼接
- 1. 读取图片
- 2. 计算图片特征点及描述符
- 3. 建立暴力匹配器
- 4. 特征匹配
- 5. 透视变换
- 6. 图像拼接
- 总结
图像拼接
图像拼接是一项将多张有重叠部分的图像(这些图像可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。
主要过程:找到特征匹配点,然后进行透视变换操作,模拟了人眼或相机镜头观看三维空间物体时的透视效果,从而能够改变图像的视角和形状,使得两个图片可以完全拼接在一起。
1. 读取图片


def cv_show(name,img):cv2.imshow(name,img)cv2.waitKey(0)
"""-----读取拼接图片-----"""
imageA = cv2.imread("t1.jpg")
cv_show('imageA',imageA)
imageB = cv2.imread("t2.jpg")
cv_show('imageB',imageB)
2. 计算图片特征点及描述符
def detectAndDescribe(image):gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # 将彩色图片转化为灰度图descriptor = cv2.SIFT_create() # 建立SIFT生成器# 检测SIFT特征点,并计算描述符,第二个参数为掩膜(kps,des) = descriptor.detectAndCompute(gray,None)# 将结果转化成Numoy数组kps_float = np.float32([kp.pt for kp in kps])# kp.pt包含两个值,分别是关键点在图像中的x和y坐标,这些坐标通常时浮点数,可以精确地描述关键点在图像中的位置return (kps,kps_float,des) # 返回特征点集,及对应的描述特征"""-----计算图片特征点及描述符-----"""
(kpsA,kps_floatA,desA) = detectAndDescribe(imageA)
(kpsB,kps_floatB,desB) = detectAndDescribe(imageB)
3. 建立暴力匹配器
"""-----建立暴力匹配器BFMatcher,在匹配大型训练集合时使用FlannBasedMatcher速度更快-----"""
matcher = cv2.BFMatcher()
4. 特征匹配
方法:关键点A与找到的两个关键点 X、Y的欧氏距离分别 d1、d2,且d1<d2。
欧氏距离(关键点A,关键点X)=d1。欧氏距离(关键点A,关键点Y)=d2。
(1)d1<d2,比值较大:可能不是匹配点,通常是由噪声引起的。
(2)d1<d2,比值较小:是匹配点。

- 函数:
--knnMatch(queryDescriptors,trainDescriptors,k,mask=None,compactResult = None)
使用KNN检测来自A、B图的SIFT特征匹配对,参数说明:
queryDescriptors:匹配图像A的描述符
trainDescriptors:匹配图像B的描述符
k:最佳匹配的描述符个数,一般k=2
- 返回值:
--返回的数据结构描述:
distance:匹配的特征点描述符的欧氏距离,数值越小也就说明两个特征点越相近。
queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下表
trainIdx:样本图像的特征点描述符下标,同时也是描述符对应特征点的下标。
- 代码应用:
rawMatches = matcher.knnMatch(desB,desA,2)
good = []
matches = []
for m in rawMatches:# 当最近距离跟次近距离的比值小于0.65时,保留此对匹配if len(m) == 2 and m[0].distance < 0.65 * m[1].distance:good.append(m)# 存储两个点在featureA,featureB中的索引值matches.append((m[0].trainIdx,m[0].queryIdx))
print(len(good))
print(matches)vis = cv2.drawMatchesKnn(imageB,kpsB,imageA,kpsA,good,None,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv_show("keypoint Matchs",vis)

5. 透视变换
透视变换是指利用透视中心、像点、目标点三点共线的条件,按透视旋转定律使承影面(透视面)绕迹线(透视轴)旋转某一角度,破坏原有的投影光线束,但仍能保持承影面上投影几何图形不变的变换。它是中心投影的射影变换,在用非齐次射影坐标表达时是平面的分式线性变换。
- 函数:
-- 计算透视变换矩阵
findHomography(srcPoints,disPoints,method=None,ransacReprojThreshold=None,mask=None,maxIters=None,confidence=None)
计算视角变换矩阵,透视变换函数,与cv2.getPerspectiveTransform()的区别在于可多个数据点变换
参数:
-- srcPoints:图片A的匹配点坐标
-- disPoints:图片B的匹配点坐标
-- method:计算变换矩阵的方法0 - 使用所有的点,最小二乘RANSAC - 基于随机样本一致性LMEDS - 最小中值RHO - 基于渐进样本一致性
-- ransacReprojThreshold:最大允许重投影错误阈值,该参数只有在method参数为RANSAC与RHO的时候启用,默认为3
返回值:H为变换矩阵,mask时掩膜标志,指示哪些点对时内点,哪些是外点.内点:指那些与估计的模型非常接近的数据点,通常是正确匹配或真实数据
- 代码应用:
if len(matches) > 4: # 当筛选后的匹配对大于4时,计算视角变换矩阵# 获取匹配对的点坐标ptsA = np.float32([kps_floatA[i] for (i, _) in matches]) # matches是通过阈值筛选之后的特征点对象ptsB = np.float32([kps_floatB[i] for (_, i) in matches]) # kps_floatA是图片A中的全部特征点坐标(H,mask) = cv2.findHomography(ptsB,ptsA,cv2.RANSAC,10)
else:print("图片未找到4个以上的匹配点")sys.exit()
result = cv2.warpPerspective(imageB,H,(imageB.shape[1] + imageA.shape[1],imageB.shape[0]))
cv_show('resultB',result)

6. 图像拼接
# 将图片A传入result图片最左端
result[0:imageA.shape[0],0:imageA.shape[1]] = imageA
cv_show("result",result)

总结
本篇介绍了:
如何通过计算关键点以及透视变换的矩阵将两个不同视角的图片进行拼接,使得它们能够完整协和的展示出来。
相关文章:
【进阶OpenCV】 (4)--图像拼接
文章目录 图像拼接1. 读取图片2. 计算图片特征点及描述符3. 建立暴力匹配器4. 特征匹配5. 透视变换6. 图像拼接 总结 图像拼接 图像拼接是一项将多张有重叠部分的图像(这些图像可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分…...
pg if条件语句
1.语法: 2.区别 IF 语句: 只能在 PL/pgSQL 中使用,不适合在直接的 SQL 查询中使用。没有返回值,仅仅是控制逻辑流程。适合用在存储过程、函数和触发器中。 CASE 语句(在 PL/pgSQL 中): 可以在 P…...
Pikachu-unsafe upfileupload-getimagesize
什么是getimagesize()? getimagesize()是PHP中用于获取图像的大小和格式的函数。它可以返回一个包含图像的宽度、高度、类型和MIME类型的数组。 由于返回的这个类型可以被伪造,如果用这个函数来获取图片类型,从而判断是否时图片的话ÿ…...
SOA是什么
SOA SOA 即 Service-Oriented Architecture(面向服务的架构)。 一、定义 SOA 是一种软件设计方法和架构理念,它将应用程序的不同功能单元(称为服务)通过定义良好的接口和契约联系起来。这些服务可以独立部署、独立运…...
构建高效团队,内部CRM系统的益处详解
内部CRM系统的最大优势之一是它能够集中并系统化客户信息,包括联系方式、购买历史、偏好设置、服务记录等。这种集中式的数据管理使企业能够快速响应客户需求,预测客户行为,提供个性化的服务或产品。更重要的是,它有助于建立一个统…...
Linux文件属性
Linux 文件基本属性 为了保护系统的安全性,Linux 系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的规定。 在 Linux 中我们通常使用以下两个命令来修改文件或目录的所属用户与权限: - chown (change owner) &#…...
什么是Anaconda
目录 1. [什么是Anaconda](#什么是Anaconda) 2. [安装Anaconda](#安装Anaconda) - [检查系统](#检查系统) - [下载Anaconda](#下载Anaconda) - [安装Anaconda](#安装Anaconda) 3. [启动Anaconda Navigator](#启动Anaconda-Navigator) 4. [创建与管理环境](#创建与管理环…...
ubuntu24开启启动脚本
因为我是在之前装的是windows和ubuntu双系统,所以想在ubuntu中自动挂载和开启时做些自己的脚本处理开发环境。 我的脚本如下: truedei@truedei-code:~$ cat mount.shsudo umount /media/truedei/*#sudo ntfsfix /dev/sda3 #sudo ntfsfix /dev/sda4 #sudo ntfsfix /dev/sda5…...
流浪地球行星发动机
随着电影《流浪地球2》的热播,影片中的行星发动机构想激发了社会各界对科幻与未来科技的广泛讨论。本文深入剖析了行星发动机的科学原理,包括重力助推、行星转移轨道以及重核聚变等核心技术,揭示了其在推动地球逃离太阳系过程中的关键作用。通…...
云岚到家,使用Elasticsearch实现服务的搜索功能,使用Canal+MQ完成服务信息与ES索引同步。MQ
为什么使用elasticsearch?数据很多么? 项目使用Elasticsearch是实现了门户上对服务的搜索。 平台上的服务数据是并不是很多,全国所有区域下的服务信息加一起几千条,之所以使用Elasticsearch是因为: 1、公司架构师在系统架构时…...
【图论】迪杰特斯拉算法
文章目录 迪杰特斯拉算法主要特点基本思想算法步骤示例 实现迪杰斯特拉算法基本步骤算法思路 总结 迪杰特斯拉算法 迪杰特斯拉算法是由荷兰计算机科学家艾兹赫尔迪杰特斯拉(Edsger W. Dijkstra)在1956年提出的,用于解决单源最短路径问题的经…...
四、Python基础语法(数据类型转换)
数据类型转换就是将一种类型的数据转换为另外一种类型的数据,数据类型转换不会改变原数据,是产生一个新的数据。 变量 要转换为的类型(原数据) -> num int(28) 一.int()将其他类型转换为整型 1.整数类型的字符串转换为整型 num1 28 print(type…...
工业物联网的安全与隐私保护—SunIOT
【大家好,我是唐Sun,唐Sun的唐,唐Sun的Sun。一站式数智工厂解决方案服务商】 在当今数字化的时代,工业物联网(IIoT)正以前所未有的速度改变着工业生产的模式和效率。然而,随着工业物联网的广泛…...
二层网络和三层网络的理解与区别(包含通俗理解和归纳总结)
二层网络和三层网络是计算机网络中的两个不同层次,主要区别在于它们所处的OSI参考模型中的层次及其功能。 二层网络 (Layer 2 Network) 1.定义: 二层网络主要涉及数据链路层(Layer 2),这是OSI模型中的第二层。 它负…...
【C++】:lambda表达式的高级应用
欢迎来到 破晓的历程的 博客 ⛺️不负时光,不负己✈️ 引言 今天 我们来见见lambda表达式的高级用法 用法1:自定义删除器 有些类型的delete方法并不符合自身的析构方法,这时我们就需要自定义删除器。 unique_ptr<FILE> ptr1(fopen…...
详解正确创建好SpringBoot项目后但是找不到Maven的问题
目录 问题 解决步骤: 找到File->Project Structure... 设置SDK 设置SDKs 问题 刚刚在使用IDEA专业版创建好SpringBoot项目后,发现上方导航栏的运行按钮是灰色的,而且左侧导航栏的pom.xml的图标颜色也不是正常的,与此同时我…...
力扣203.移除链表元素
题目链接:203. 移除链表元素 - 力扣(LeetCode) 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6…...
UE4 材质学习笔记05(凹凸偏移和视差映射/扭曲着色器)
一.凹凸偏移和视差映射 1.偏移映射 这需要一个高度图并且它的分辨率很低,只有256*256,事实上,如果高度图的分辨率比较低并且有点模糊,效果反而会更好 然后将高度图输出到BumpOffset节点的height插槽中, 之后利用得到…...
网约班车升级手机端退票
背景 作为老古董程序员,不,应该叫互联网人员,因为我现在做的所有的事情,都是处于爱好,更多的时间是在和各行各业的朋友聊市场,聊需求,聊怎么通过IT互联网 改变实体行业的现状,准确的…...
【Vue】Vue 快速教程
Vue tutorial 参考:教程 | Vue.js (vuejs.org) 该教程需要前置知识:HTML, CSS, JavaScript 学习前置知识,你可以去 MDN Vue framework 是一个 JavaScript framework,以下简称 Vue,下面是它的特点 声明式渲染ÿ…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...
算法刷题-回溯
今天给大家分享的还是一道关于dfs回溯的问题,对于这类问题大家还是要多刷和总结,总体难度还是偏大。 对于回溯问题有几个关键点: 1.首先对于这类回溯可以节点可以随机选择的问题,要做mian函数中循环调用dfs(i&#x…...
未授权访问事件频发,我们应当如何应对?
在当下,数据已成为企业和组织的核心资产,是推动业务发展、决策制定以及创新的关键驱动力。然而,未授权访问这一隐匿的安全威胁,正如同高悬的达摩克利斯之剑,时刻威胁着数据的安全,一旦触发,便可…...
数据挖掘是什么?数据挖掘技术有哪些?
目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...
