当前位置: 首页 > news >正文

【进阶OpenCV】 (4)--图像拼接

文章目录

  • 图像拼接
    • 1. 读取图片
    • 2. 计算图片特征点及描述符
    • 3. 建立暴力匹配器
    • 4. 特征匹配
    • 5. 透视变换
    • 6. 图像拼接
  • 总结

图像拼接

图像拼接是一项将多张有重叠部分的图像(这些图像可能是不同时间、不同视角或者不同传感器获得的)拼成一幅无缝的全景图或高分辨率图像的技术。

主要过程:找到特征匹配点,然后进行透视变换操作,模拟了人眼或相机镜头观看三维空间物体时的透视效果,从而能够改变图像的视角和形状,使得两个图片可以完全拼接在一起。

1. 读取图片

在这里插入图片描述

在这里插入图片描述

def cv_show(name,img):cv2.imshow(name,img)cv2.waitKey(0)
"""-----读取拼接图片-----"""
imageA = cv2.imread("t1.jpg")
cv_show('imageA',imageA)
imageB = cv2.imread("t2.jpg")
cv_show('imageB',imageB)

2. 计算图片特征点及描述符

def detectAndDescribe(image):gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # 将彩色图片转化为灰度图descriptor = cv2.SIFT_create() # 建立SIFT生成器# 检测SIFT特征点,并计算描述符,第二个参数为掩膜(kps,des) = descriptor.detectAndCompute(gray,None)# 将结果转化成Numoy数组kps_float = np.float32([kp.pt for kp in kps])# kp.pt包含两个值,分别是关键点在图像中的x和y坐标,这些坐标通常时浮点数,可以精确地描述关键点在图像中的位置return (kps,kps_float,des) # 返回特征点集,及对应的描述特征"""-----计算图片特征点及描述符-----"""
(kpsA,kps_floatA,desA) = detectAndDescribe(imageA)
(kpsB,kps_floatB,desB) = detectAndDescribe(imageB)

3. 建立暴力匹配器

"""-----建立暴力匹配器BFMatcher,在匹配大型训练集合时使用FlannBasedMatcher速度更快-----"""
matcher = cv2.BFMatcher()

4. 特征匹配

方法:关键点A与找到的两个关键点 X、Y的欧氏距离分别 d1、d2,且d1<d2。

欧氏距离(关键点A,关键点X)=d1。欧氏距离(关键点A,关键点Y)=d2。

(1)d1<d2,比值较大:可能不是匹配点,通常是由噪声引起的。

(2)d1<d2,比值较小:是匹配点。

在这里插入图片描述

  • 函数
--knnMatch(queryDescriptors,trainDescriptors,k,mask=None,compactResult = None)
使用KNN检测来自A、B图的SIFT特征匹配对,参数说明:
queryDescriptors:匹配图像A的描述符
trainDescriptors:匹配图像B的描述符
k:最佳匹配的描述符个数,一般k=2
  • 返回值
--返回的数据结构描述:
distance:匹配的特征点描述符的欧氏距离,数值越小也就说明两个特征点越相近。
queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下表
trainIdx:样本图像的特征点描述符下标,同时也是描述符对应特征点的下标。
  • 代码应用:
rawMatches = matcher.knnMatch(desB,desA,2)
good = []
matches = []
for m in rawMatches:# 当最近距离跟次近距离的比值小于0.65时,保留此对匹配if len(m) == 2 and m[0].distance < 0.65 * m[1].distance:good.append(m)# 存储两个点在featureA,featureB中的索引值matches.append((m[0].trainIdx,m[0].queryIdx))
print(len(good))
print(matches)vis = cv2.drawMatchesKnn(imageB,kpsB,imageA,kpsA,good,None,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv_show("keypoint Matchs",vis)

在这里插入图片描述

5. 透视变换

透视变换是指利用透视中心、像点、目标点三点共线的条件,按透视旋转定律使承影面(透视面)绕迹线(透视轴)旋转某一角度,破坏原有的投影光线束,但仍能保持承影面上投影几何图形不变的变换。它是中心投影的射影变换,在用非齐次射影坐标表达时是平面的分式线性变换。

  • 函数
-- 计算透视变换矩阵
findHomography(srcPoints,disPoints,method=None,ransacReprojThreshold=None,mask=None,maxIters=None,confidence=None)
计算视角变换矩阵,透视变换函数,与cv2.getPerspectiveTransform()的区别在于可多个数据点变换
参数:
-- srcPoints:图片A的匹配点坐标
-- disPoints:图片B的匹配点坐标
-- method:计算变换矩阵的方法0 - 使用所有的点,最小二乘RANSAC - 基于随机样本一致性LMEDS - 最小中值RHO - 基于渐进样本一致性
-- ransacReprojThreshold:最大允许重投影错误阈值,该参数只有在method参数为RANSAC与RHO的时候启用,默认为3
返回值:H为变换矩阵,mask时掩膜标志,指示哪些点对时内点,哪些是外点.内点:指那些与估计的模型非常接近的数据点,通常是正确匹配或真实数据
  • 代码应用
if len(matches) > 4: # 当筛选后的匹配对大于4时,计算视角变换矩阵# 获取匹配对的点坐标ptsA = np.float32([kps_floatA[i] for (i, _) in matches]) # matches是通过阈值筛选之后的特征点对象ptsB = np.float32([kps_floatB[i] for (_, i) in matches]) # kps_floatA是图片A中的全部特征点坐标(H,mask) = cv2.findHomography(ptsB,ptsA,cv2.RANSAC,10)
else:print("图片未找到4个以上的匹配点")sys.exit()
result = cv2.warpPerspective(imageB,H,(imageB.shape[1] + imageA.shape[1],imageB.shape[0]))
cv_show('resultB',result)

在这里插入图片描述

6. 图像拼接

# 将图片A传入result图片最左端
result[0:imageA.shape[0],0:imageA.shape[1]] = imageA
cv_show("result",result)

在这里插入图片描述

总结

本篇介绍了:

如何通过计算关键点以及透视变换的矩阵将两个不同视角的图片进行拼接,使得它们能够完整协和的展示出来。

相关文章:

【进阶OpenCV】 (4)--图像拼接

文章目录 图像拼接1. 读取图片2. 计算图片特征点及描述符3. 建立暴力匹配器4. 特征匹配5. 透视变换6. 图像拼接 总结 图像拼接 图像拼接是一项将多张有重叠部分的图像&#xff08;这些图像可能是不同时间、不同视角或者不同传感器获得的&#xff09;拼成一幅无缝的全景图或高分…...

pg if条件语句

1.语法&#xff1a; 2.区别 IF 语句&#xff1a; 只能在 PL/pgSQL 中使用&#xff0c;不适合在直接的 SQL 查询中使用。没有返回值&#xff0c;仅仅是控制逻辑流程。适合用在存储过程、函数和触发器中。 CASE 语句&#xff08;在 PL/pgSQL 中&#xff09;&#xff1a; 可以在 P…...

Pikachu-unsafe upfileupload-getimagesize

什么是getimagesize()&#xff1f; getimagesize()是PHP中用于获取图像的大小和格式的函数。它可以返回一个包含图像的宽度、高度、类型和MIME类型的数组。 由于返回的这个类型可以被伪造&#xff0c;如果用这个函数来获取图片类型&#xff0c;从而判断是否时图片的话&#xff…...

SOA是什么

SOA SOA 即 Service-Oriented Architecture&#xff08;面向服务的架构&#xff09;。 一、定义 SOA 是一种软件设计方法和架构理念&#xff0c;它将应用程序的不同功能单元&#xff08;称为服务&#xff09;通过定义良好的接口和契约联系起来。这些服务可以独立部署、独立运…...

构建高效团队,内部CRM系统的益处详解

内部CRM系统的最大优势之一是它能够集中并系统化客户信息&#xff0c;包括联系方式、购买历史、偏好设置、服务记录等。这种集中式的数据管理使企业能够快速响应客户需求&#xff0c;预测客户行为&#xff0c;提供个性化的服务或产品。更重要的是&#xff0c;它有助于建立一个统…...

Linux文件属性

Linux 文件基本属性 为了保护系统的安全性&#xff0c;Linux 系统对不同的用户访问同一文件&#xff08;包括目录文件&#xff09;的权限做了不同的规定。 在 Linux 中我们通常使用以下两个命令来修改文件或目录的所属用户与权限&#xff1a; - chown (change owner) &#…...

什么是Anaconda

目录 1. [什么是Anaconda](#什么是Anaconda) 2. [安装Anaconda](#安装Anaconda) - [检查系统](#检查系统) - [下载Anaconda](#下载Anaconda) - [安装Anaconda](#安装Anaconda) 3. [启动Anaconda Navigator](#启动Anaconda-Navigator) 4. [创建与管理环境](#创建与管理环…...

ubuntu24开启启动脚本

因为我是在之前装的是windows和ubuntu双系统,所以想在ubuntu中自动挂载和开启时做些自己的脚本处理开发环境。 我的脚本如下: truedei@truedei-code:~$ cat mount.shsudo umount /media/truedei/*#sudo ntfsfix /dev/sda3 #sudo ntfsfix /dev/sda4 #sudo ntfsfix /dev/sda5…...

流浪地球行星发动机

随着电影《流浪地球2》的热播&#xff0c;影片中的行星发动机构想激发了社会各界对科幻与未来科技的广泛讨论。本文深入剖析了行星发动机的科学原理&#xff0c;包括重力助推、行星转移轨道以及重核聚变等核心技术&#xff0c;揭示了其在推动地球逃离太阳系过程中的关键作用。通…...

云岚到家,使用Elasticsearch实现服务的搜索功能,使用Canal+MQ完成服务信息与ES索引同步。MQ

为什么使用elasticsearch?数据很多么&#xff1f; 项目使用Elasticsearch是实现了门户上对服务的搜索。 平台上的服务数据是并不是很多&#xff0c;全国所有区域下的服务信息加一起几千条&#xff0c;之所以使用Elasticsearch是因为&#xff1a; 1、公司架构师在系统架构时…...

【图论】迪杰特斯拉算法

文章目录 迪杰特斯拉算法主要特点基本思想算法步骤示例 实现迪杰斯特拉算法基本步骤算法思路 总结 迪杰特斯拉算法 迪杰特斯拉算法是由荷兰计算机科学家艾兹赫尔迪杰特斯拉&#xff08;Edsger W. Dijkstra&#xff09;在1956年提出的&#xff0c;用于解决单源最短路径问题的经…...

四、Python基础语法(数据类型转换)

数据类型转换就是将一种类型的数据转换为另外一种类型的数据&#xff0c;数据类型转换不会改变原数据&#xff0c;是产生一个新的数据。 变量 要转换为的类型(原数据) -> num int(28) 一.int()将其他类型转换为整型 1.整数类型的字符串转换为整型 num1 28 print(type…...

工业物联网的安全与隐私保护—SunIOT

【大家好&#xff0c;我是唐Sun&#xff0c;唐Sun的唐&#xff0c;唐Sun的Sun。一站式数智工厂解决方案服务商】 在当今数字化的时代&#xff0c;工业物联网&#xff08;IIoT&#xff09;正以前所未有的速度改变着工业生产的模式和效率。然而&#xff0c;随着工业物联网的广泛…...

二层网络和三层网络的理解与区别(包含通俗理解和归纳总结)

二层网络和三层网络是计算机网络中的两个不同层次&#xff0c;主要区别在于它们所处的OSI参考模型中的层次及其功能。 二层网络 (Layer 2 Network) 1.定义&#xff1a; 二层网络主要涉及数据链路层&#xff08;Layer 2&#xff09;&#xff0c;这是OSI模型中的第二层。 它负…...

【C++】:lambda表达式的高级应用

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 引言 今天 我们来见见lambda表达式的高级用法 用法1&#xff1a;自定义删除器 有些类型的delete方法并不符合自身的析构方法&#xff0c;这时我们就需要自定义删除器。 unique_ptr<FILE> ptr1(fopen…...

详解正确创建好SpringBoot项目后但是找不到Maven的问题

目录 问题 解决步骤&#xff1a; 找到File->Project Structure... 设置SDK 设置SDKs 问题 刚刚在使用IDEA专业版创建好SpringBoot项目后&#xff0c;发现上方导航栏的运行按钮是灰色的&#xff0c;而且左侧导航栏的pom.xml的图标颜色也不是正常的&#xff0c;与此同时我…...

力扣203.移除链表元素

题目链接&#xff1a;203. 移除链表元素 - 力扣&#xff08;LeetCode&#xff09; 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,6…...

UE4 材质学习笔记05(凹凸偏移和视差映射/扭曲着色器)

一.凹凸偏移和视差映射 1.偏移映射 这需要一个高度图并且它的分辨率很低&#xff0c;只有256*256&#xff0c;事实上&#xff0c;如果高度图的分辨率比较低并且有点模糊&#xff0c;效果反而会更好 然后将高度图输出到BumpOffset节点的height插槽中&#xff0c; 之后利用得到…...

网约班车升级手机端退票

背景 作为老古董程序员&#xff0c;不&#xff0c;应该叫互联网人员&#xff0c;因为我现在做的所有的事情&#xff0c;都是处于爱好&#xff0c;更多的时间是在和各行各业的朋友聊市场&#xff0c;聊需求&#xff0c;聊怎么通过IT互联网 改变实体行业的现状&#xff0c;准确的…...

【Vue】Vue 快速教程

Vue tutorial 参考&#xff1a;教程 | Vue.js (vuejs.org) 该教程需要前置知识&#xff1a;HTML, CSS, JavaScript 学习前置知识&#xff0c;你可以去 MDN Vue framework 是一个 JavaScript framework&#xff0c;以下简称 Vue&#xff0c;下面是它的特点 声明式渲染&#xff…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...