当前位置: 首页 > news >正文

YOLO11改进 | 注意力机制| 对小目标友好的BiFormer【CVPR2023】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文介绍了一种新颖的动态稀疏注意力机制,即通过双层路由来实现更灵活的计算分配,并具有内容感知能力。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改将修改后的完整代码放在文章的最后方便大家一键运行小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2. 将BiFormer 添加到YOLO11中

2.1 BiFormer 的代码实现

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1.论文

论文地址:BiFormer: Vision Transformer with Bi-Level Routing Attention——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

2. 将BiFormer 添加到YOLO11中

2.1 BiFormer 的代码实现

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中

"""
Bi-Level Routing Attention.
"""
from typing import Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor, LongTensor__all__ = ['BiLevelRoutingAttention']class TopkRouting(nn.Module):"""differentiable topk routing with scalingArgs:qk_dim: int, feature dimension of query and keytopk: int, the 'topk'qk_scale: int or None, temperature (multiply) of softmax activationwith_param: bool, wether inorporate learnable params in routing unitdiff_routing: bool, wether make routing differentiablesoft_routing: bool, wether make output value multiplied by routing weights"""def __init__(self, qk_dim, topk=4, qk_scale=None, param_routing=False, diff_routing=False):super().__init__()self.topk = topkself.qk_dim = qk_dimself.scale = qk_scale or qk_dim ** -0.5self.diff_routing = diff_routing# TODO: norm layer before/after linear?self.emb = nn.Linear(qk_dim, qk_dim) if param_routing else nn.Identity()# routing activationself.routing_act = nn.Softmax(dim=-1)def forward(self, query: Tensor, key: Tensor) -> Tuple[Tensor]:"""Args:q, k: (n, p^2, c) tensorReturn:r_weight, topk_index: (n, p^2, topk) tensor"""if not self.diff_routing:query, key = query.detach(), key.detach()query_hat, key_hat = self.emb(query), self.emb(key)  # per-window pooling -> (n, p^2, c)attn_logit = (query_hat * self.scale) @ key_hat.transpose(-2, -1)  # (n, p^2, p^2)topk_attn_logit, topk_index = torch.topk(attn_logit, k=self.topk, dim=-1)  # (n, p^2, k), (n, p^2, k)r_weight = self.routing_act(topk_attn_logit)  # (n, p^2, k)return r_weight, topk_indexclass KVGather(nn.Module):def __init__(self, mul_weight='none'):super().__init__()assert mul_weight in ['none', 'soft', 'hard']self.mul_weight = mul_weightdef forward(self, r_idx: Tensor, r_weight: Tensor, kv: Tensor):"""r_idx: (n, p^2, topk) tensorr_weight: (n, p^2, topk) tensorkv: (n, p^2, w^2, c_kq+c_v)Return:(n, p^2, topk, w^2, c_kq+c_v) tensor"""# select kv according to routing indexn, p2, w2, c_kv = kv.size()topk = r_idx.size(-1)# print(r_idx.size(), r_weight.size())# FIXME: gather consumes much memory (topk times redundancy), write cuda kernel?topk_kv = torch.gather(kv.view(n, 1, p2, w2, c_kv).expand(-1, p2, -1, -1, -1),# (n, p^2, p^2, w^2, c_kv) without mem cpydim=2,index=r_idx.view(n, p2, topk, 1, 1).expand(-1, -1, -1, w2, c_kv)# (n, p^2, k, w^2, c_kv))if self.mul_weight == 'soft':topk_kv = r_weight.view(n, p2, topk, 1, 1) * topk_kv  # (n, p^2, k, w^2, c_kv)elif self.mul_weight == 'hard':raise NotImplementedError('differentiable hard routing TBA')# else: #'none'#     topk_kv = topk_kv # do nothingreturn topk_kvclass QKVLinear(nn.Module):def __init__(self, dim, qk_dim, bias=True):super().__init__()self.dim = dimself.qk_dim = qk_dimself.qkv = nn.Linear(dim, qk_dim + qk_dim + dim, bias=bias)def forward(self, x):q, kv = self.qkv(x).split([self.qk_dim, self.qk_dim + self.dim], dim=-1)return q, kv# q, k, v = self.qkv(x).split([self.qk_dim, self.qk_dim, self.dim], dim=-1)# return q, k, vclass BiLevelRoutingAttention(nn.Module):"""n_win: number of windows in one side (so the actual number of windows is n_win*n_win)kv_per_win: for kv_downsample_mode='ada_xxxpool' only, number of key/values per window. Similar to n_win, the actual number is kv_per_win*kv_per_win.topk: topk for window filteringparam_attention: 'qkvo'-linear for q,k,v and o, 'none': param free attentionparam_routing: extra linear for routingdiff_routing: wether to set routing differentiablesoft_routing: wether to multiply soft routing weights"""def __init__(self, dim, n_win=7, num_heads=8, qk_dim=None, qk_scale=None,kv_per_win=4, kv_downsample_ratio=4, kv_downsample_kernel=None, kv_downsample_mode='identity',topk=4, param_attention="qkvo", param_routing=False, diff_routing=False, soft_routing=False,side_dwconv=3,auto_pad=True):super().__init__()# local attention settingself.dim = dimself.n_win = n_win  # Wh, Wwself.num_heads = num_headsself.qk_dim = qk_dim or dimassert self.qk_dim % num_heads == 0 and self.dim % num_heads == 0, 'qk_dim and dim must be divisible by num_heads!'self.scale = qk_scale or self.qk_dim ** -0.5################side_dwconv (i.e. LCE in ShuntedTransformer)###########self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv // 2,groups=dim) if side_dwconv > 0 else \lambda x: torch.zeros_like(x)################ global routing setting #################self.topk = topkself.param_routing = param_routingself.diff_routing = diff_routingself.soft_routing = soft_routing# routerassert not (self.param_routing and not self.diff_routing)  # cannot be with_param=True and diff_routing=Falseself.router = TopkRouting(qk_dim=self.qk_dim,qk_scale=self.scale,topk=self.topk,diff_routing=self.diff_routing,param_routing=self.param_routing)if self.soft_routing:  # soft routing, always diffrentiable (if no detach)mul_weight = 'soft'elif self.diff_routing:  # hard differentiable routingmul_weight = 'hard'else:  # hard non-differentiable routingmul_weight = 'none'self.kv_gather = KVGather(mul_weight=mul_weight)# qkv mapping (shared by both global routing and local attention)self.param_attention = param_attentionif self.param_attention == 'qkvo':self.qkv = QKVLinear(self.dim, self.qk_dim)self.wo = nn.Linear(dim, dim)elif self.param_attention == 'qkv':self.qkv = QKVLinear(self.dim, self.qk_dim)self.wo = nn.Identity()else:raise ValueError(f'param_attention mode {self.param_attention} is not surpported!')self.kv_downsample_mode = kv_downsample_modeself.kv_per_win = kv_per_winself.kv_downsample_ratio = kv_downsample_ratioself.kv_downsample_kenel = kv_downsample_kernelif self.kv_downsample_mode == 'ada_avgpool':assert self.kv_per_win is not Noneself.kv_down = nn.AdaptiveAvgPool2d(self.kv_per_win)elif self.kv_downsample_mode == 'ada_maxpool':assert self.kv_per_win is not Noneself.kv_down = nn.AdaptiveMaxPool2d(self.kv_per_win)elif self.kv_downsample_mode == 'maxpool':assert self.kv_downsample_ratio is not Noneself.kv_down = nn.MaxPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()elif self.kv_downsample_mode == 'avgpool':assert self.kv_downsample_ratio is not Noneself.kv_down = nn.AvgPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()elif self.kv_downsample_mode == 'identity':  # no kv downsamplingself.kv_down = nn.Identity()elif self.kv_downsample_mode == 'fracpool':# assert self.kv_downsample_ratio is not None# assert self.kv_downsample_kenel is not None# TODO: fracpool# 1. kernel size should be input size dependent# 2. there is a random factor, need to avoid independent sampling for k and vraise NotImplementedError('fracpool policy is not implemented yet!')elif kv_downsample_mode == 'conv':# TODO: need to consider the case where k != v so that need two downsample modulesraise NotImplementedError('conv policy is not implemented yet!')else:raise ValueError(f'kv_down_sample_mode {self.kv_downsaple_mode} is not surpported!')# softmax for local attentionself.attn_act = nn.Softmax(dim=-1)self.auto_pad = auto_paddef forward(self, x, ret_attn_mask=False):"""x: NHWC tensorReturn:NHWC tensor"""x = rearrange(x, "n c h w -> n h w c")# NOTE: use padding for semantic segmentation###################################################if self.auto_pad:N, H_in, W_in, C = x.size()pad_l = pad_t = 0pad_r = (self.n_win - W_in % self.n_win) % self.n_winpad_b = (self.n_win - H_in % self.n_win) % self.n_winx = F.pad(x, (0, 0,  # dim=-1pad_l, pad_r,  # dim=-2pad_t, pad_b))  # dim=-3_, H, W, _ = x.size()  # padded sizeelse:N, H, W, C = x.size()assert H % self.n_win == 0 and W % self.n_win == 0  ##################################################### patchify, (n, p^2, w, w, c), keep 2d window as we need 2d pooling to reduce kv sizex = rearrange(x, "n (j h) (i w) c -> n (j i) h w c", j=self.n_win, i=self.n_win)#################qkv projection#################### q: (n, p^2, w, w, c_qk)# kv: (n, p^2, w, w, c_qk+c_v)# NOTE: separte kv if there were memory leak issue caused by gatherq, kv = self.qkv(x)# pixel-wise qkv# q_pix: (n, p^2, w^2, c_qk)# kv_pix: (n, p^2, h_kv*w_kv, c_qk+c_v)q_pix = rearrange(q, 'n p2 h w c -> n p2 (h w) c')kv_pix = self.kv_down(rearrange(kv, 'n p2 h w c -> (n p2) c h w'))kv_pix = rearrange(kv_pix, '(n j i) c h w -> n (j i) (h w) c', j=self.n_win, i=self.n_win)q_win, k_win = q.mean([2, 3]), kv[..., 0:self.qk_dim].mean([2, 3])  # window-wise qk, (n, p^2, c_qk), (n, p^2, c_qk)##################side_dwconv(lepe)################### NOTE: call contiguous to avoid gradient warning when using ddplepe = self.lepe(rearrange(kv[..., self.qk_dim:], 'n (j i) h w c -> n c (j h) (i w)', j=self.n_win,i=self.n_win).contiguous())lepe = rearrange(lepe, 'n c (j h) (i w) -> n (j h) (i w) c', j=self.n_win, i=self.n_win)############ gather q dependent k/v #################r_weight, r_idx = self.router(q_win, k_win)  # both are (n, p^2, topk) tensorskv_pix_sel = self.kv_gather(r_idx=r_idx, r_weight=r_weight, kv=kv_pix)  # (n, p^2, topk, h_kv*w_kv, c_qk+c_v)k_pix_sel, v_pix_sel = kv_pix_sel.split([self.qk_dim, self.dim], dim=-1)# kv_pix_sel: (n, p^2, topk, h_kv*w_kv, c_qk)# v_pix_sel: (n, p^2, topk, h_kv*w_kv, c_v)######### do attention as normal ####################k_pix_sel = rearrange(k_pix_sel, 'n p2 k w2 (m c) -> (n p2) m c (k w2)',m=self.num_heads)  # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_kq//m) transpose here?v_pix_sel = rearrange(v_pix_sel, 'n p2 k w2 (m c) -> (n p2) m (k w2) c',m=self.num_heads)  # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_v//m)q_pix = rearrange(q_pix, 'n p2 w2 (m c) -> (n p2) m w2 c',m=self.num_heads)  # to BMLC tensor (n*p^2, m, w^2, c_qk//m)# param-free multihead attentionattn_weight = (q_pix * self.scale) @ k_pix_sel  # (n*p^2, m, w^2, c) @ (n*p^2, m, c, topk*h_kv*w_kv) -> (n*p^2, m, w^2, topk*h_kv*w_kv)attn_weight = self.attn_act(attn_weight)out = attn_weight @ v_pix_sel  # (n*p^2, m, w^2, topk*h_kv*w_kv) @ (n*p^2, m, topk*h_kv*w_kv, c) -> (n*p^2, m, w^2, c)out = rearrange(out, '(n j i) m (h w) c -> n (j h) (i w) (m c)', j=self.n_win, i=self.n_win,h=H // self.n_win, w=W // self.n_win)out = out + lepe# output linearout = self.wo(out)# NOTE: use padding for semantic segmentation# crop padded regionif self.auto_pad and (pad_r > 0 or pad_b > 0):out = out[:, :H_in, :W_in, :].contiguous()if ret_attn_mask:return out, r_weight, r_idx, attn_weightelse:return rearrange(out, "n h w c -> n c h w")

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_BiFormer.yaml文件,粘贴下面的内容

  • 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 21, 25], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 1, BiLevelRoutingAttention, []]- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 21, 25], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 # YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

关键步骤四:在task.py的parse_model函数中进行注册,

 先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加BiLevelRoutingAttention 

elif m in {BiLevelRoutingAttention}:c2 = ch[f]args = [c2, *args]

2.5 执行程序

关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_BiFormer.yaml的路径即可

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Pathif __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址# Use the modelresults = model.train(data=r"你的数据集的yaml文件地址",epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

 🚀运行程序,如果出现下面的内容则说明添加成功🚀

                   from  n    params  module                                       arguments0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]      3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]     5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]16                  -1  1    265728  ultralytics.nn.modules.block.BiLevelRoutingAttention[256]17                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]18                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]19            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]20                  -1  1    150144  ultralytics.nn.modules.block.BiLevelRoutingAttention[192]21                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]22                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]23            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]24                  -1  1    595200  ultralytics.nn.modules.block.BiLevelRoutingAttention[384]25                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]26        [17, 21, 25]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLO11_Biformer summary: 352 layers, 3,635,152 parameters, 3,635,136 gradients, 46.1 GFLOPs

3.修改后的网络结构图

看不懂的可以问我,偷个懒 

4. 完整代码分享

这个后期补充吧~,先按照步骤来即可

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——《YOLO11改进有效涨点》。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——《YOLO11改进有效涨点》

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

相关文章:

YOLO11改进 | 注意力机制| 对小目标友好的BiFormer【CVPR2023】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 本文介绍了一种新颖的动态稀疏注意力机制…...

高级Python开发工程师的面试备考指南

目录 博客标题:高级Python开发工程师的面试备考指南:30个面试问题与详细解析岗位职责问题解析1. 公司产品功能开发和代码维护2. 技术方案与项目计划制定3. 算法基础与代码优化4. 项目管理与团队协作任职要求问题解析5. Python 开发经验6. 数据处理相关库(Pandas, Numpy, Mat…...

【Java】JAVA知识总结浅析

Java是一门功能强大的编程语言,广泛应用于多个领域。Java的编程思想,包括面向过程和面向对象编程,Java的发展历史,各版本的特点,JVM原理,数据类型,Java SE与Java EE的区别,应用场景&…...

23-云原生监控系统

├──23-云原生监控系统 | ├──1-Prometheus监控 | | ├──1-二进制方式部署Prometheus监控系统 | | ├──2-二进制方式部署Prometheus监控系统告警 | | ├──3-容器化构建Prometheus监控系统 | | ├──4-容器监控方案CAdvisor | | └──5-k8s监…...

信息安全工程师(40)防火墙技术应用

一、防火墙的基本概念 防火墙是一种网络安全设备,用于监控和控制网络流量,以保护网络免受未经授权的访问和攻击。它可以是装配多张网卡的通用计算机,也可能是通用的物理设备。防火墙通过在网络之间设置访问控制策略,对进出的通信流…...

Liquid AI与液态神经网络:超越Transformer的大模型架构探索

1. 引言 自2017年谷歌发表了开创性的论文《Attention Is All You Need》以来,基于Transformer架构的模型迅速成为深度学习领域的主流选择。然而,随着技术的发展,挑战Transformer主导地位的呼声也逐渐高涨。最近,由麻省理工学院(M…...

Spring Boot 进阶-详解Spring Boot中使用Swagger3.0

在上篇文章中我们介绍了Spring Boot 整合Swagger3.0的一些基础用法,这篇文章中我们来深入学习一下Swagger3.0 还有其他高级用法。 在日常的开发中,为了减少工作量,我们会遇到一种情况,就是将前端的接口与后端的接口编写到同一个代码中,这样也提高了代码的复用率,减少了重…...

Linux平台Kafka高可用集群部署全攻略

🐇明明跟你说过:个人主页 🏅个人专栏:《大数据前沿:技术与应用并进》🏅 🔖行路有良友,便是天堂🔖 目录 一、引言 1、Kafka简介 2、Kafka核心优势 二、环境准备 1…...

Android中有哪些布局方式?

Android中的布局方式是实现用户界面设计的基础,通过合理的布局,可以创建出美观且易用的应用程序界面。Android提供了多种布局方式,每种布局方式都有其特定的应用场景和特点。以下是对Android中主要布局方式的详细介绍: 一、线性布…...

Apache Ranger 70道面试题及参考答案

什么是Apache Ranger? Apache Ranger Apache Ranger 是一个用于 Hadoop 生态系统的集中式安全管理框架,旨在为 Hadoop 及相关大数据技术提供全面的安全解决方案。 它具有以下主要特点和功能: 一、访问控制管理 细粒度的权限控制:可以对 Hadoop 生态系统中的各种组件(如 H…...

2024年9月30日--10月6日(ue5肉鸽结束,20小时,共2851小时)

按照月计划,本周把ue肉鸽游戏完成,然后进行ue5太阳系 , 剩余14节,218分钟,如果按照10分钟的视频教程1小时进行完的话,则需要22小时,分布在10月2日-10月6日之间,每天44分钟的视频教程…...

什么是静态加载-前端

什么是前端静态加载 在前端开发中,静态加载是一种常见且重要的技术。简单来说,前端静态加载指的是在页面加载时将所需的资源(如HTML、CSS、JavaScript、图片等)一并加载到用户的浏览器中。这种方式有助于提高页面的加载速度和用户…...

(01)python-opencv基础知识入门(图片的读取与视频打开)

前言 一、图像入门 1.1 读取图像cv.imread() 1.2 数组数据转换cv.cvtColor() 1.3数据窗口展示 1.4图像保存 1.5图像的截取 1.6 图像的比例缩放 二、视频入门 参考文献 前言 OpenCV 于 1999 年由 Gary Bradsky 在英特尔创立,第一个版本于 2000 年问世。Vad…...

quic-go实现屏幕广播程序

最近在折腾quic-go, 突然想起屏广适合用udp实现,而http3基于quic-go,后者又基于udp, 所以玩一下。 先贴出本机运行效果图: 功能(实现)说明: 1.服务器先启动作为共享屏幕方,等待客户端连接上来 2.客户端连接 3.客户…...

C#操作SqlServer数据库语句

操作数据库语句 操作数据库语句需要搭配数据库的连接Connection类 和下达SQL命令Command类 1. ExecuteNonQuery ExecuteNonQuery 方法主要用来更新数据。通常使用它来执行Update、Insert和Delete语句,最后执行sql语句的时候可以用一个整形变量来接收,返…...

Linux之实战命令33:mount应用实例(六十七)

简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【…...

论文精读:基于概率教师学习的跨域自适应目标检测(ICML2022)

原文标题:Learning Domain Adaptive Object Detection with Probabilistic Teacher 中文标题:基于概率教师学习的域自适应目标检测 代码地址: GitHub - hikvision-research/ProbabilisticTeacher: An official implementation of ICML 2022 p…...

thinkphp 学习记录

1、PHP配置 (点开链接后,往下拉,找到PHP8.2.2版本,下载的是ZIP格式,解压即用) PHP For Windows: Binaries and sources Releases (这里是下载地址) 我解压的地址是:D:\…...

Leetcode 24 Swap Nodes in Pairs

题意:给定一个list of nodes,要求交换相邻的两个节点 https://leetcode.com/problems/swap-nodes-in-pairs/description/ Input: head [1,2,3,4] Output: [2,1,4,3] 首先你需要思考,我要交换两个节点,对于每个节点,向…...

选择 PDF 编辑器时要考虑什么?如何选择适用于 Windows 10 的 PDF 编辑器

选择 PDF 编辑器时要考虑什么? 随着技术的出现,您在网上浏览时肯定会遇到一些 PDF 软件。但是,选择PDF 编辑器时需要考虑什么?如果您是重度用户并将在您的工作场所使用它,建议您找到专业、使用方便且能够帮助您完成任…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

【kafka】Golang实现分布式Masscan任务调度系统

要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

离线语音识别方案分析

随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...