当前位置: 首页 > news >正文

基于主成分分析的混音方法

一、简介:
基于主成分分析的混音方法是一种常见的音频混音技术,它利用主成分分析(PCA)对音频信号进行降维和重构,从而实现混音。

二、基本步骤如下:
采集和存储需要混音的音频信号。
对音频信号进行主成分分析,提取出主成分,即数据中最主要的信息。
将主成分进行降维处理,只保留其中的一部分信息。
将不同音频信号的降维主成分按照一定比例加权叠加,得到混音后的主成分。
将混合后的主成分重构为混音后的音频信号。

三、有优缺点分析:
基于主成分分析的混音方法的优点在于,它可以自动地提取数据中最主要的信息,并将其用于混音,从而降低混音的复杂度。此外,该方法还可以处理高维数据,因此可以用于多个信号的混音。

四、下面是一个基于主成分分析的混音方法的示例代码,在该示例代码中,我们使用了一个名为eigen_decomposition()的函数来执行协方差矩阵的特征值分解。实际上,该函数需要根据具体情况进行实现。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define N 1024 // number of samples
#define M 2 // number of audio signals
#define K 1 // number of mixed components

float x[N][M]; // audio signals
float z[N][K]; // mixed components
float w[M][K]; // mixing weights
float y[N][M]; // mixed audio signals

void pca_mixing() {
int i, j, k;
float sum_x, sum_w, sum_y;
// calculate mean of audio signals
float mean[M];
for (j = 0; j < M; j++) {
sum_x = 0.0;
for (i = 0; i < N; i++) {
sum_x += x[i][j];
}
mean[j] = sum_x / N;
}
// subtract mean from audio signals
for (j = 0; j < M; j++) {
for (i = 0; i < N; i++) {
x[i][j] -= mean[j];
}
}
// calculate covariance matrix of audio signals
float cov[M][M];
for (j = 0; j < M; j++) {
for (k = 0; k < M; k++) {
sum_w = 0.0;
for (i = 0; i < N; i++) {
sum_w += x[i][j] * x[i][k];
}
cov[j][k] = sum_w / (N - 1);
}
}
// peform eigenvalue decomposition of covariance matrix
float eigval[M];
float eigvec[M][M];
eigen_decomposition(cov, eigval, eigvec);
/ select top K eigenvectors
float top_eigvec[M][K];
for (j = 0; j < K; j++) {
for (k = 0; k < M; k++) {
top_eigvec[k][j] = eigvec[k][M-j-1];
}
}
// calculate mixing weights
for (j = 0; j < M; j++) {
for (k = 0; k < K; k++) {
sum_w = 0.0;
for (i = 0; i < M; i++) {
sum_w += top_eigvec[i][k] * cov[i][j];
}
w[j][k] = sum_w / eigval[k];
}
}
// calculate mixed components
for (k = 0; k < K; k++) {
for (i = 0; i < N; i++) {
sum_x = 0.0;
for (j = 0; j < M; j++) {
sum_x += w[j][k] * x[i][j];
}
z[i][k] = sum_x;
}
}
// calculate mixed audio signals
for (j = 0; j < M; j++) {
for (i = 0; i < N; i++) {
sum_y = 0.0;
for (k = 0; k < K; k++) {
sum_y += w[j][k] * z[i][k];
}
y[i][j] = sum_y;
}
}
}

相关文章:

基于主成分分析的混音方法

一、简介&#xff1a; 基于主成分分析的混音方法是一种常见的音频混音技术&#xff0c;它利用主成分分析&#xff08;PCA&#xff09;对音频信号进行降维和重构&#xff0c;从而实现混音。 二、基本步骤如下&#xff1a; 采集和存储需要混音的音频信号。 对音频信号进行主成分…...

Code Two Exchange Crack

CodeTwo Exchange 迁移允许直接从早期版本的 Exchange&#xff08;从 Exchange 2010 开始&#xff09;安全、轻松地迁移到 Exchange 2019 和 2016。此服务器应用程序还允许您集中管理来自 Microsoft 365 (Office 365) 的邮箱迁移以及来自基于 IMAP 的电子邮件系统&#xff08;例…...

jQuery.form.js 详细用法_维护老项目使用

概述 jquery-3.3.1.min.js &#xff1a; http://jquery.com/download jquery.form.min.js &#xff1a;http://malsup.com/jquery/form/#tab7 jquery form 是一个表单异步提交的插件&#xff0c;可以很容易提交表单&#xff0c;设置表单提交的参数&#xff0c;并在表单提交前…...

【Java】关于你不知道的Java大整数运算之BigInteger类超级好用!!!

目录 一、BigInteger类简单介绍 二、BigInteger构造方式 &#xff08;1&#xff09;构造方式 &#xff08;2&#xff09;输入方式 三、BigInteger常见的成员方法 &#xff08;1&#xff09;方法介绍 &#xff08;2&#xff09;方法使用演示 1.加减乘除余 2.比较 3.绝…...

运维是不是没有出路了?

瑞典马工的​​《是时候让运维集体下岗了》一出&#xff0c;就让运维人为之一颤&#xff0c;​人人自危。文章开篇就提到&#xff1a;​​明人不说暗话&#xff0c;在云原生和DevOps成熟的今天&#xff0c;运维作为一个岗位和团队已经完成了历史任务&#xff0c;应该退出舞台了…...

【C++笔试强训】第七天

选择题 解析&#xff1a;内联函数&#xff08;inline&#xff09;一般用于代码较少&#xff0c;代码块里面没有递归且频繁调用的函数&#xff0c;是一种以空间换时间&#xff08;不是指内存&#xff0c;而是指令变多编译出来的可执行程序会变大&#xff09;的做法。内联函数在预…...

mysql binlog 一直追加写,磁盘满了怎么办?

文章目录 mysql binlog 清理策略1、设置binlog最大的文件数和文件大小2、定时清理过期binlog文件3、手动清理binlog文件4、禁用或启用binlogmysql binlog用于记录mysql数据库所有变更(数据库的DDL、DML操作)包括用户执行的语句,以及底层引擎所执行的操作的二进制日志,主要用…...

缓存穿透、缓存雪崩、缓存击穿解决方案

什么是缓存 缓存就是数据交换的缓冲区&#xff08;称作Cache&#xff09;,是存贮数据的临时地方&#xff0c;一般读写性能较高。 添加 redis 缓存 给店铺类型查询业务添加缓存 需求&#xff1a;添加ShopTypeController中的queryTypeList方法&#xff0c;添加查询缓存 缓存更新…...

web + servlet + jdbc mysql 实现简单的表单管理界面

目录数据库创建数据库连接servlet创建,这里注意一下我的数据库我自己改了一下名字lhx网页html运行文件目录展示首先我们准备好开发使用的工具以及配置 idea2020 tomcat8.5 创建javaweb参考idea编译Tomcat详细步骤 IDEA通过JDBC连接数据库请参考jdbc连接数据库 需要登陆注册界面…...

Maven 国内镜像仓库

镜像仓库目标 当我们未定义任何远程仓库时&#xff0c;使用 Maven 更新依赖时&#xff0c;其会去默认远程仓库中拉取&#xff0c;默认远程仓库 是国外地址&#xff0c;所以在国内访问特别慢&#xff0c;想提升访问速度&#xff0c;需要将国外地址换成国内地址 更换仓库地址的…...

day21 ● 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● 236. 二叉树的最近公共祖先

二叉搜索树的最小绝对差 二叉搜索树&#xff08;Binary Search Tree&#xff0c;简称 BST&#xff09;是一种特殊的二叉树&#xff0c;它的每个节点都满足以下条件&#xff1a; 左子树上所有节点的值均小于该节点的值&#xff1b;右子树上所有节点的值均大于该节点的值&#…...

大学计算机(软件类)专业推荐竞赛 / 证书 官网及赛事相关信息整理

大学计算机专业(软件)推荐竞赛 / 证书 官网及赛事相关信息 一、算法类(丰富简历)&#xff1a; 1、ACM国际大学生程序设计竞赛&#xff1a; 官网&#xff1a;https://icpc.global/ 国内&#xff1a;http://icpc.pku.edu.cn/index.htm 报名方式&#xff1a;区域预赛一般每年9-1…...

Metasploit入门到高级【第九章】

预计更新第一章&#xff1a;Metasploit 简介 Metasploit 是什么Metasploit 的历史和发展Metasploit 的组成部分 第二章&#xff1a;Kali Linux 入门 Kali Linux 简介Kali Linux 安装和配置常用命令和工具介绍 第三章&#xff1a;Metasploit 基础 Metasploit 的基本概念Met…...

JDK之8后: 协程? 虚拟线程!!!

特性官方文档: https://openjdk.org/jeps/436 Java协程 近三十年来&#xff0c;Java 开发人员一直依赖线程作为并发服务器应用程序的构建块。每个方法中的每个语句都在线程内执行&#xff0c;并且由于 Java 是多线程的&#xff0c;因此多个执行线程同时发生。线程是Java的并发…...

体验 jeecg

体验 jeecg官网地址事前准备安装升级 node 和 npm 版本验证安装安装 pnpm clidocker 启动 MySQLdocker 启动 redisgit clone 项目启动JAVA项目 jeecg-boot启动Vue3项目 jeecgboot-vue3官网地址 http://www.jeecg.com/ 事前准备 (1) 为了回避Could not find artifact com.mic…...

投稿指南【NO.13】计算机学会CCF推荐期刊和会议分享(人工智能)

前 言国内高等院校研究生及博士毕业条件需要发表高水平期刊或者顶会&#xff08;清北上交等重点学校毕业要求为至少发一篇顶会&#xff09;&#xff0c;很多同学私信问到一级学会的会议论文怎么找、是什么&#xff0c;比如前段时间放榜的CVPR论文就是人工智能领域的顶会国际会议…...

一份sql笔试

1、 select substr(time,1,10),count(order_id),count(distinct passenger_id) from order where substr(time,1,7)2023-08 group by substr(time,1,10) order by substr(time,1,10);2、 select city_id from (select * from order where substr(time,1,7) 2022-08) t1 left j…...

交换瓶子

交换瓶子 贡献者&#xff1a;programmer_ada 有N个瓶子&#xff0c;编号 1 ~ N&#xff0c;放在架子上。 比如有5个瓶子&#xff1a; 2 1 3 5 4 要求每次拿起2个瓶子&#xff0c;交换它们的位置。 经过若干次后&#xff0c;使得瓶子的序号为&#xff1a; 1 2 3 4 5 对于这么…...

二、Docker安装、启动、卸载、示例

Docker 支持 CentOS 6 及以后的版本&#xff0c;可以直接通过yum进行安装&#xff1a; 使用流程&#xff1a;启动主机 – 启动Docker服务 – 下载容器镜像 – 启动镜像得一个到容器 – 进入容器使用我们想要的程序 主机一般是Linux、Utuban 以下主机系统以CentOS7为例子&#…...

开心档之C++ STL 教程

C STL 教程 目录 C STL 教程 实例 在前面的章节中&#xff0c;我们已经学习了 C 模板的概念。C STL&#xff08;标准模板库&#xff09;是一套功能强大的 C 模板类&#xff0c;提供了通用的模板类和函数&#xff0c;这些模板类和函数可以实现多种流行和常用的算法和数据结构…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14

什么是 Pattern Matching&#xff08;模式匹配&#xff09; ❝ 模式匹配就是一种“描述式”的写法&#xff0c;不需要你手动判断、提取数据&#xff0c;而是直接描述你希望的数据结构是什么样子&#xff0c;系统自动判断并提取。❞ 你给的定义拆解&#xff1a; ✴ Instead of …...

TMC2226超静音步进电机驱动控制模块

目前已经使用TMC2226量产超过20K,发现在静音方面做的还是很不错。 一、TMC2226管脚定义说明 二、原理图及下载地址 一、TMC2226管脚定义说明 引脚编号类型功能OB11电机线圈 B 输出 1BRB2线圈 B 的检测电阻连接端。将检测电阻靠近该引脚连接到地。使用内部检测电阻时,将此引…...