提示词优化、GPTs逆向工程、大语言模型原理、大语言模型优化、开源模型本地私有化部署、从零构建大语言模型、智能体构建以及大语言模型的发展趋势
深入理解和掌握大语言模型的前言技术,涵盖了提示词优化、GPTs逆向工程、大语言模型原理、大语言模型优化、开源模型本地私有化部署、从零构建大语言模型、智能体构建以及大语言模型的发展趋势。通过系统化的学习,不仅掌握理论知识,还能在实际操作中获得宝贵经验。
学习如何优化提示词,掌握GPTs逆向工程技术,了解并应用Transformer、BERT、GPT等模型的工作原理,精通检索增强生成、微调和量化技术,掌握开源大语言模型的下载与使用,学习数据集构建、模型训练与部署,以及智能体构建的方法和工具。无论您是科研人员、工程师,还是对人工智能和大语言模型感兴趣的技术爱好者,本教程都将为您提供系统的知识和实用的技能。加入我们,共同探索人工智能的无限可能,推动科技创新!
【收获】:
1.系统掌握ChatGPT-4o在科研中的应用技巧,提升科研效率
2.深入理解大语言模型的原理和发展趋势,紧跟前沿技术
3.学会从零构建和优化大语言模型,增强实际操作能力
4.掌握开源大语言模型的本地私有化部署和使用,提升技术应用水平
5.掌握智能体构建的方法和工具,拓展AI应用场景
6.掌握多模态、时间序列、目标检测、语义分割大模型的应用
第一章 ChatGPT-4o进阶
1、基于思维链(Chain of Thought)公式的提示词优化(思维链的概念、提示词优化策略与技巧)
2、(实操演练)利用思维链方法优化提示词,提升对话质量
3、GPTs逆向工程:提示词破解(提示词逆向工程的基本原理、分析和破解提示词的方法)
4、(实操演练)对常见GPTs提示词进行逆向工程
5、提示词保护策略以及防止提示词被破解的方法
6、(实操演练)构建坚不可摧的GPTs:设计一个安全的提示词
7、GPT API接口调用与完整项目开发(对话机器人、文本嵌入提取特征)
8、案例演示与实操练习
第二章 大语言模型原理详解
1、注意力机制(基本概念、Self-Attention与Multi-Head Attention)
2、(实操演练)实现一个简单的注意力机制模型
3、Transformer模型架构详解
4、Transformer模型在NLP和CV中的应用
5、BERT模型简介(拓扑结构、训练过程、使用BERT进行文本分类)
6、GPT模型工作原理简介及演化过程(拓扑结构、训练过程、使用GPT进行文本生成)
7、向量数据库简介与向量检索技术详解(使用向量数据库进行快速检索)
8、文本嵌入(Text Embedding)技术概述(常用的文本嵌入模型、使用GPT API)
9、案例演示与实操练习
第三章 大语言模型优化
1、检索增强生成(RAG)技术详解(RAG的基本原理、RAG在大语言模型中的作用和优势、RAG的系统架构、RAG检索结果与生成结果相结合的方法、RAG知识库的构建方法)
2、(实操演练)基于RAG的问答系统设计
3、微调(Fine-Tuning)技术详解(微调的基本原理、微调在大语言模型中的作用、准备一个用于微调的数据集、常见的微调方法,如PEFT、LoRA等、不同任务的微调策略、微调过程中的常见问题与解决方案)
4、(实操演练)微调一个预训练的GPT模型
5、量化技术详解(量化的基本概念、量化在模型优化中的重要性、量化的不同方法,如:静态量化、动态量化、混合量化等、量化处理的步骤)
6、案例演示与实操练习
第四章 开源大语言模型及本地部署
1、开源大语言模型简介(开源大语言模型的基本概念、开源大语言模型与闭源大语言模型的对比)
2、(实操演练)开源大语言模型(Llama3、Mistral、Phi3、Qwen2等)下载与使用
3、(实操演练)使用Docker部署开源大语言模型(Docker的基本概念、Docker的核心组件与功能、Docker的安装与配置、在Docker中部署Llama3等开源大语言模型)
4、(实操演练)使用Open-WebUI构建Web可视化交互(类似ChatGPT)的开源大语言模型对话系统(Open-WebUI的基本概念与功能、Open-WebUI的下载与安装、配置一个用于对话系统的Open-WebUI)
5、案例演示与实操练习
第五章 从0到1搭建第一个大语言模型
1、(实操演练)数据集构建(数据集的收集与处理、从互联网上收集文本数据、数据清洗与标注、常用的数据集格式,如:CSV、JSON、TXT等)
2、(实操演练)大语言预训练模型的选择(预训练模型的优势、常见的预训练模型,如:GPT、BERT等、从Hugging Face等平台下载预训练模型)
3、(实操演练)大语言模型的训练(模型训练的基本步骤、训练过程中的监控与调试)
4、(实操演练)大语言模型的优化(常见训练参数,如:学习率、批次大小等、参数调整与优化技巧、优化训练参数以提高模型性能)
5、(实操演练)大语言模型的推理(模型推理与模型训练的区别、提高推理速度的技巧、从输入到输出的完整推理流程)
6、(实操演练)大语言模型的部署与应用(模型部署的基本流程、部署环境的配置与管理)
第六章 智能体(Agent)构建
1、智能体(Agent)概述(什么是智能体?智能体的类型和应用场景、典型的智能体应用,如:Google Data Science Agent等)
2、构建智能体(Agent)的基本步骤
3、LangChain平台概述(什么是LangChain?LangChain的核心功能与特点、LangChain的核心组件)
4、(实操演练)使用LangChain构建Agent(LangChain的使用流程、LangChain的配置与管理)
5、Coze平台概述
6、(实操演练)使用Coze平台构建Agent
7、案例演示与实操练习
第七章 大语言模型发展趋势
1、大语言模型发展趋势概述(大语言模型的发展历史回顾、当前大语言模型的热点技术、大语言模型的未来方向:更大规模、更高效率、更多模态)
2、多模态大语言模型简介(什么是多模态?多模态数据的常见种类、多模态在NLP和CV中的应用、多模态大语言模型的架构与组件)
3、多模态数据融合的常见方法(早期融合、晚期融合、联合嵌入等)
4、多模态特征提取与特征表示技术(图像特征、文本特征的联合表示)
5、(实操演练)多模态大语言模型的训练与优化(多模态数据的标注与处理、多模态模型的训练、多模态模型的性能优化)
6、Mixture of Experts(MoE)简介(什么是Mixture of Experts?MoE的工作原理、MoE模型的架构、Moe的训练与推理、在大语言模型中集成MoE技术)
7、案例演示与实操练习
第八章 LlaVA多模态大语言模型详解
1、LLaVA的核心技术与工作原理(模型拓扑结构讲解)
2、LLaVA与其他多模态模型的区别(LLaVA模型的优势有哪些?)
3、LLaVA的架构与训练(LLaVA的多模态输入处理与特征表示、视觉编码器与语言模型的结合、LLaVA的训练数据与预训练过程)
4、LLaVA的典型应用场景(图像问答、图像生成与描述等)
5、案例演示与实操练习
第九章 时间序列建模与预测的大语言模型
1、时间序列建模的大语言模型技术细节(基于Transformer的时间序列预测原理、自注意力机制、编码器-解码器结构、位置编码)
2、时间序列建模的大语言模型训练
3、Time-LLM模型详解(拓扑结构简介、重新编程时间序列输入、Prompt-as-Prefix (PaP)等)
4、基于TimeGPT的时间序列预测(TimeGPT工作原理详解、TimeGPT库的安装与使用)
5、案例演示与实操练习
第十章 目标检测的大语言模型
1、基于大语言模型的目标检测的工作原理(输入图像的特征提取、文本嵌入的生成、视觉和语言特征的融合、目标检测与输出)
2、目标检测领域的大语言模型概述(Pix2Seq、Grounding DINO、Lenna等)
3、案例演示与实操练习
第十一章 语义分割的大语言模型
1、基于大语言模型的语义分割的工作原理(图像特征提取、文本嵌入生成、跨模态融合、分割预测)
2、语义分割领域的大语言模型概述(ProLab、Segment Anything Model、CLIPSeg、Segment Everything Everywhere Model等)
3、案例演示与实操练习
第十二章 总结与答疑讨论
1、总结(关键知识点回顾)
2、答疑与讨论
3、相关学习资料分享与拷贝
注:请提前配置所需软件
★ 点 击 下 方 关 注,获取海量教程和资源!
↓↓↓
相关文章:
提示词优化、GPTs逆向工程、大语言模型原理、大语言模型优化、开源模型本地私有化部署、从零构建大语言模型、智能体构建以及大语言模型的发展趋势
深入理解和掌握大语言模型的前言技术,涵盖了提示词优化、GPTs逆向工程、大语言模型原理、大语言模型优化、开源模型本地私有化部署、从零构建大语言模型、智能体构建以及大语言模型的发展趋势。通过系统化的学习,不仅掌握理论知识,还能在实际…...
nn.Conv2d(二)
**前置知识: 1、nn.Conv2d和torch.nn.functional.conv2d的对比: nn.Conv2d(能自主学习,更新调整卷积核) 模块:可以看作是一个“卷积层”,用在神经网络里。定义一次,用多次…...

获取鸿蒙设备Udid遇到的问题
参考官方文档:注册调试设备-调试应用(HarmonyOS)-AppGallery Connect帮助中心 - 华为HarmonyOS开发者 (huawei.com) 坑一:The sdk hdc.exe version is too low, please upgrade to the latest version. 升级dev工具和sdk配置为api…...

【华为HCIP实战课程十】OSPF网络DR和BDR实战讲解,网络工程师
一、DR与BDR的基础介绍 点到点同步LSA成本小 多点接入网络同步LSA成本大,需要DR/BDR 由于MA网络中,任意两台路由器都需要传递路由信息,网络中有n台路由器,则需要建立n*(n-1)/2个邻接关系。任何一台路由器的路由变化都会导致多次传递,浪费了带宽资源,DR和BDR应运而生!…...

视频怎么去除杂音保留人声?让人声更动听!视频噪音处理攻略
在视频制作过程中,音质是至关重要的一环。然而,很多时候我们录制的视频会伴随着各种不想要的杂音,比如风声、交通噪音或是其他环境音,这些杂音严重影响了观众的观看体验。那么,如何在保留人声的同时,有效地…...

洗衣店数字化转型:Spring Boot订单管理
3系统分析 3.1可行性分析 通过对本洗衣店订单管理系统实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本洗衣店订单管理系统采用JAVA作为开发语言,S…...

Koa学习
Koa 安装与配置 1. 初始化项目 在终端中执行以下命令: # 创建项目文件夹 mkdir koa cd koa# 初始化并安装依赖 npm init -y npm install koa npm install nodemon --save-dev2. 修改 package.json 在 package.json 文件中进行如下修改: {"type…...

linux线程 | 线程的概念
前言:本篇讲述linux里面线程的相关概念。 线程在我们的教材中的定义通常是这样的——线程是进程的一个执行分支。 线程的执行粒度, 要比进程要细。 我们在读完这句话后其实并不能很好的理解什么是线程。 所以, 本节内容博主将会带友友们理解什么是线程&a…...

2024年软件设计师中级(软考中级)详细笔记【3】数据结构(下)(分值5分)
上午题第3章数据结构下部目录 前言第3章 数据结构【下】(5分)3.5 查找3.5.1 查找的基本概念【考点】3.5.2 静态查找表的查找方法3.5.3 动态查找表3.5.4 哈希表3.5.4.1 哈希表的定义3.5.4.2 哈希函数的构造方法3.5.4.3 处理冲突的方法 3.6 排序3.6.1 排序的基本概念3.6.2 简单排…...

WPF|依赖属性SetCurrentValue方法不会使绑定失效, SetValue方法会使绑定失效?是真的吗?
引言 最近因为一个触发器设置的结果总是不起效果的原因,进一步去了解[依赖属性的优先级](Dependency property value precedence - WPF .NET | Microsoft Learn)。在学习这个的过程中发现对SetCurrentValue一直以来的谬误。 在WPF中依赖属性Dependency property的…...

Windows搭建Java开发环境(Building a Java development environment on Windows)
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…...

用FPGA做一个全画幅无反相机
做一个 FPGA 驱动的全画幅无反光镜数码相机是不是觉得很酷? 就是上图这样。 Sitina 一款开源 35 毫米全画幅 (3624 毫米) CCD 无反光镜可换镜头相机 (MILC),这个项目最初的目标是打造一款数码相机,将 SLR [单镜头反光] 相机转换为 DSLR [数码…...

使用 Go 语言与 Redis 构建高效缓存与消息队列系统
什么是 Redis? Redis 是一个开源的内存数据库,支持多种数据结构,包括字符串、列表、集合、哈希和有序集合。由于 Redis 运行在内存中,读写速度极快,常被用于构建缓存系统、实时排行榜、会话存储和消息队列等高并发场景…...

springboot 整合spring ai实现 基于知识库的客服问答
rag 需求产生的背景介绍: 在使用大模型时,常遇到的问题之一是模型可能产生幻觉,即生成的内容缺乏准确性。此外,由于大模型不直接访问企业的专有数据,其响应可能会显得泛泛而谈,不够精准或具体,…...

云原生(四十九) | WordPress源码部署
文章目录 WordPress源码部署 一、WordPress部署步骤 二、创建项目目录 三、上传源码到WordPress 四、配置安全组 五、配置WordPress 六、访问WordPress WordPress源码部署 一、WordPress部署步骤 第一步:创建项目目录 第二步:上传源码到项目目…...

Spring Boot 集成 LiteFlow 实现业务流程编排
LiteFlow 是一款轻量级的流程编排框架,它允许开发者通过简单的配置方式,将复杂的业务流程分解为多个独立的节点,然后通过定义规则来编排节点,达到解耦业务逻辑、提高代码可维护性的目的 1. LiteFlow 的基本概念 在 LiteFlow 中,主要有以下几个概念: 节点 (Node):代表一…...
在 Android Studio 中引入android.os.SystemProperties
在 Android Studio 中引入android.os.SystemProperties 前言 网上有很多种方法,其中直接导入包的办法是行不通的,昨天自己发现问题后也踩了很多坑,现在把问题解决了也全面汇总了几种方法,确保可以百分百引入 1. layoutlib.jar包…...
代码随想录算法训练营总结
这几天一直有事情需要忙,所以现在来准备总结以下训练营的成果。 先说以下总体感受,非常值得!!! 从两个月前开始跟着每天看发布的任务,然后每天坚持打卡,收获还是很大的,从数组开始…...

【uniapp】使用uniapp实现一个输入英文单词翻译组件
目录 1、组件代码 2、组件代码 3、调用页面 4、展示 前言:使用uniapp调用一个在线单词翻译功能 1、组件代码 2、组件代码 YouDaoWordTranslator <template><view class"translator"><input class"ipttext" type"te…...

6. 继承、重写、super、final
文章目录 一、重新定义需求二、继承1. 继续分析2. 概念3. 代码① 父类② 子类③ 测试结果 4. 饿狼传说之多层继承① 概念② 代码 5. 多继承 三、方法的重写1. 情境2. 代码① 吃什么② 怎么叫(Override重写) 3. 小结 四、super1. 啃老2. 啃老啃到底 五、final1. 用途及特征2. 举…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...