当前位置: 首页 > news >正文

报错 - llama-index pydantic error | arbitrary_types_allowed | PydanticUserError

国庆节前使用 LiteLLMEmbedding 设置 llama-index Settings.embed_model 还好好的,回来后,就就报错,试着降级 llama-index 也无用;设置 Settings.llm 也是好好地。

解决方法:conda 重新创建环境后,在安装 llama-index 就好了

具体原因还没找到


我的报错信息如下:

1008

 As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. The langchain_core.pydantic_v1 module was a compatibility shim for pydantic v1, and should no longer be used. Please update the code to import from Pydantic directly.For example, replace imports like: `from langchain_core.pydantic_v1 import BaseModel`
with: `from pydantic import BaseModel`
or the v1 compatibility namespace if you are working in a code base that has not been fully upgraded to pydantic 2 yet. 	from pydantic.v1 import BaseModelfrom langchain.agents.agent import (
Traceback (most recent call last):File "<stdin>", line 1, in <module>File "/Users/xx/miniconda3/lib/python3.11/site-packages/llama_index/core/settings.py", line 74, in embed_modelself._embed_model = resolve_embed_model(embed_model)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/llama_index/core/embeddings/utils.py", line 39, in resolve_embed_modelfrom llama_index.core.bridge.langchain import Embeddings as LCEmbeddingsFile "/Users/xx/miniconda3/lib/python3.11/site-packages/llama_index/core/bridge/langchain.py", line 2, in <module>from langchain.agents import (File "/Users/xx/miniconda3/lib/python3.11/site-packages/langchain/agents/__init__.py", line 40, in <module>from langchain.agents.agent import (File "/Users/xx/miniconda3/lib/python3.11/site-packages/langchain/agents/agent.py", line 639, in <module>class LLMSingleActionAgent(BaseSingleActionAgent):File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/v1/main.py", line 197, in __new__fields[ann_name] = ModelField.infer(^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/v1/fields.py", line 504, in inferreturn cls(^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/v1/fields.py", line 434, in __init__self.prepare()File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/v1/fields.py", line 555, in prepareself.populate_validators()File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/v1/fields.py", line 829, in populate_validators*(get_validators() if get_validators else list(find_validators(self.type_, self.model_config))),^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/v1/validators.py", line 765, in find_validatorsraise RuntimeError(f'no validator found for {type_}, see `arbitrary_types_allowed` in Config')
RuntimeError: no validator found for <class 'langchain.chains.llm.LLMChain'>, see `arbitrary_types_allowed` in Config

升级 langchain 从 0.2 到 0.3 后,依然报错

/Users/xx/miniconda3/lib/python3.11/site-packages/langchain/chains/api/base.py:56: LangChainDeprecationWarning: As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. The langchain_core.pydantic_v1 module was a compatibility shim for pydantic v1, and should no longer be used. Please update the code to import from Pydantic directly.For example, replace imports like: `from langchain_core.pydantic_v1 import BaseModel`
with: `from pydantic import BaseModel`
or the v1 compatibility namespace if you are working in a code base that has not been fully upgraded to pydantic 2 yet. 	from pydantic.v1 import BaseModelfrom langchain_community.utilities.requests import TextRequestsWrapper
/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_config.py:341: UserWarning: Valid config keys have changed in V2:
* 'allow_population_by_field_name' has been renamed to 'populate_by_name'warnings.warn(message, UserWarning)
Traceback (most recent call last):File "<stdin>", line 1, in <module>File "/Users/xx/miniconda3/lib/python3.11/site-packages/llama_index/core/settings.py", line 74, in embed_modelself._embed_model = resolve_embed_model(embed_model)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/llama_index/core/embeddings/utils.py", line 39, in resolve_embed_modelfrom llama_index.core.bridge.langchain import Embeddings as LCEmbeddingsFile "/Users/xx/miniconda3/lib/python3.11/site-packages/llama_index/core/bridge/langchain.py", line 66, in <module>from langchain_community.chat_models import (File "<frozen importlib._bootstrap>", line 1229, in _handle_fromlistFile "/Users/xx/miniconda3/lib/python3.11/site-packages/langchain_community/chat_models/__init__.py", line 301, in __getattr__module = importlib.import_module(_module_lookup[name])^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/importlib/__init__.py", line 126, in import_modulereturn _bootstrap._gcd_import(name[level:], package, level)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/langchain_community/chat_models/anyscale.py", line 31, in <module>class ChatAnyscale(ChatOpenAI):File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_model_construction.py", line 224, in __new__complete_model_class(File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_model_construction.py", line 577, in complete_model_classschema = cls.__get_pydantic_core_schema__(cls, handler)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/main.py", line 671, in __get_pydantic_core_schema__return handler(source)^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__schema = self._handler(source_type)^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 655, in generate_schemaschema = self._generate_schema_inner(obj)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 924, in _generate_schema_innerreturn self._model_schema(obj)^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 739, in _model_schema{k: self._generate_md_field_schema(k, v, decorators) for k, v in fields.items()},^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 739, in <dictcomp>{k: self._generate_md_field_schema(k, v, decorators) for k, v in fields.items()},^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 1115, in _generate_md_field_schemacommon_field = self._common_field_schema(name, field_info, decorators)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 1308, in _common_field_schemaschema = self._apply_annotations(^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 2107, in _apply_annotationsschema = get_inner_schema(source_type)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__schema = self._handler(source_type)^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 2091, in inner_handlermetadata_js_function = _extract_get_pydantic_json_schema(obj, schema)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/Users/xx/miniconda3/lib/python3.11/site-packages/pydantic/_internal/_generate_schema.py", line 2447, in _extract_get_pydantic_json_schemaraise PydanticUserError(
pydantic.errors.PydanticUserError: The `__modify_schema__` method is not supported in Pydantic v2. Use `__get_pydantic_json_schema__` instead in class `SecretStr`.For further information visit https://errors.pydantic.dev/2.9/u/custom-json-schema

2024-10-08(二)

相关文章:

报错 - llama-index pydantic error | arbitrary_types_allowed | PydanticUserError

国庆节前使用 LiteLLMEmbedding 设置 llama-index Settings.embed_model 还好好的&#xff0c;回来后&#xff0c;就就报错&#xff0c;试着降级 llama-index 也无用&#xff1b;设置 Settings.llm 也是好好地。 解决方法&#xff1a;conda 重新创建环境后&#xff0c;在安装 …...

PostgreSQL Docker Error – 5432: 地址已被占用

PostgreSQL Docker Error – 5432: 地址已被占用 今天在学习【Spring Boot React】价值79.9美元&#xff0c;全栈开发&#xff0c;搭建个人网站、做毕业设计、试试这套课程第17~21节视频的时候&#xff0c;发现运行docker run --name demo-postgres -e POSTGRES_PASSWORDpass…...

【LeetCode】动态规划—646. 最长数对链(附完整Python/C++代码)

动态规划—646. 最长数对链 前言题目描述基本思路1. 问题定义2. 理解问题和递推关系3. 解决方法3.1 动态规划方法3.2 贪心方法 4. 进一步优化5. 小总结 代码实现PythonPython3代码实现Python 代码解释 CC代码实现C 代码解释 总结 前言 在这个问题中&#xff0c;我们需要找到可…...

数字媒体产业园区:创新资源集聚,助力企业成长

在当今数字化浪潮汹涌的时代&#xff0c;数字媒体产业园区作为创意与技术的交汇点&#xff0c;正以其独特的魅力和无限的潜力&#xff0c;成为助力企业成长的重要平台。其中&#xff0c;“数字媒体产业园区”以其创新资源的集聚效应&#xff0c;为入驻企业提供了广阔的发展空间…...

【Linux】来查看当前系统的架构

使用 uname 命令 uname -m 使用 arch 命令 arch 查看 /proc/cpuinfo 文件 查找 model name 或 Processor 字段。 cat /proc/cpuinfo 使用 lscpu 命令 lscpu...

QT中的信号槽

1.解释说明 1- qt中一般是使用信号槽来绑定对应的事件 2- 可以在初始化中调用connect来调用 3- 这里分别用头文件、源文件、界面文件去写示例 2.头文件.h #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>QT_BEGIN_NAMESPACE namespace Ui { class Mai…...

域名怎么转让给别人?

域名怎么转让给别人?许多企业和个人在发展过程中可能会选择转让域名&#xff0c;无论是因为业务重组、品牌更换&#xff0c;还是为了实现经济利益。那么&#xff0c;如何将域名顺利转让给他人呢?本文将详细介绍域名转让的步骤和注意事项。 一、了解域名转让的基本概念 域名…...

计算机网络思维导图

计算机网络 网络层 概述 主要任务 实现网路互连&#xff0c;进而实现数据包在各网络之间的传输 解决问题 向运输层提供可靠传输/不可靠传输的服务网络层寻址问题路由选择问题 英特网时使用最多的互联网&#xff0c;使用TCP/IP协议栈 网络层使用网际协议IP&#xff0c;时整个…...

07.useDefault

在 React 应用开发中,处理状态的默认值和空值情况是一个常见需求。useDefault 钩子提供了一种优雅的方式来管理状态,同时为空值(null 或 undefined)提供默认回退值。这个自定义钩子不仅简化了状态管理,还提高了代码的可读性和健壮性。以下是如何实现和使用这个自定义钩子:…...

git更加详细和灵活的提交过程,附带如何配置. gitignore来忽略部分文件的提交。

本套流程可以控制提交的代码是哪些&#xff0c;比直接使用git add . 更灵活&#xff0c;比如在项目中&#xff0c;一些文件不能通过.gitignore进行尽职提交&#xff0c;那么就需要使用本方法来手动控制是否提交&#xff0c;缺点就是相对麻烦一些。 git status//查看从当前工作…...

使用正则表达式删除文本的奇数行或者偶数行

用智谱清言和kimi搜出来的结果都没法在notepad生效&#xff0c;后面在overflow上找到的答案比较靠谱。 查找&#xff1a;^[^\n]*\n([^\n]*) 替换&#xff1a;\1 删除偶数行 查找&#xff1a;^([^\n]*)\n[^\n]* 替换&#xff1a;\1 代码解释 ^&#xff1a;这个符号代表字符…...

YOLOv10改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制

一、本文介绍 本文记录的是基于CAA注意力模块的YOLOv10目标检测改进方法研究。在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题。CAA能够有效捕捉长距离依赖,并且参数量和计算量…...

Unity修改鼠标图片【超简单】

1.向Unity导入需要修改的鼠标图片&#xff0c;在Unity内设置图片的Texture Type为Cursor。 2.编写代码 [SerializeField] Texture2D mouseTex;//放图片 void Start() {Cursor.SetCursor(mouseTex, Vector2.zero, CursorMode.Auto); }3.代码挂载在某物体&#xff08;或者随便哪…...

windows C++-创建数据流代理(三)

以下示例展示了 log_agent 类&#xff0c;它类似于 dataflow_agent 类。 log_agent 类实现异步记录代理&#xff0c;用于将日志消息写入文件和控制台。 log_agent 类使应用程序能够将消息分类为信息性、警告或错误消息。 它还使应用程序能够指定每个日志类别是写入文件、控制台…...

C语言学习-循环嵌套打印字母金字塔

前言 最近博主也是在努力的学习C语言&#xff0c;在学习的过程当中碰到了一个对我来说的“难题”&#xff0c;足足控了我有半小时&#xff0c;不过这个问题也是挺有趣的&#xff0c;我也就借着本道题目来写一篇文章和大家交流交流 准备工作 vs2022(其他编辑器当然也可以)c语…...

探索CI/CD:持续集成与持续部署的基本概念

在现代软件开发中&#xff0c;持续集成&#xff08;CI&#xff09;和持续部署&#xff08;CD&#xff09;已经成为提高开发效率和产品质量的关键实践。本文将详细介绍CI/CD的基本概念、优势以及如何在实际项目中实施CI/CD。 一、什么是持续集成&#xff08;CI&#xff09;&…...

大厂面试真题:说一说CMS和G1

CMS垃圾回收器四个主要步骤 初始标记阶段&#xff08;Initial Mark Phase&#xff09; 目的&#xff1a;标记老年代中所有从GC Roots直接可达的对象。特点&#xff1a;此阶段会导致STW&#xff08;Stop The World&#xff09;&#xff0c;即暂停应用程序的执行&#xff0c;但停…...

使用Qt Creator创建项目

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 使用Qt Creator创建项目 收录于专栏【Qt开发】 本专栏旨在分享学习Qt的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 温馨提示: 1. 新…...

C++ 与 C 的那些事儿:深度剖析两者区别

在编程的世界里&#xff0c;C 和 C 就像是一对有着紧密血缘关系却又各具特色的兄弟。对于很多初学者或者有一定编程经验的人来说&#xff0c;分清它们之间的差异至关重要。今天&#xff0c;我们就来深入探讨一下 C 和 C 的区别。 <1>、C 是一种静态类型的、编译式的、通…...

学习​Redis 高可用性​

Redis 高可用性&#xff08;High Availability&#xff09;是指在 Redis 系统中实现持续的可用性&#xff0c;即使在发生硬件故障或其他意外情况下&#xff0c;系统仍能保持运行。 Redis 高可用性&#xff08;High Availability&#xff09;是指在 Redis 系统中实现持续的可用性…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

SQL进阶之旅 Day 22:批处理与游标优化

【SQL进阶之旅 Day 22】批处理与游标优化 文章简述&#xff08;300字左右&#xff09; 在数据库开发中&#xff0c;面对大量数据的处理任务时&#xff0c;单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”&#xff0c;深入探讨如何通过批量操作和游标技术提…...