[自然语言处理]RNN
1 传统RNN模型与LSTM

import torch
import torch.nn as nntorch.manual_seed(6)# todo:基础RNN模型
def dem01():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加输入的sequence_length
def dem02():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加隐藏层的个数
def dem03():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 2)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:一个一个地向模型输入单词-全零初始化
def dem04_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.zeros(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.zeros(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-全一初始化
def dem04_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.ones(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.ones(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-随机初始化
def dem04_3():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.randn(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.randn(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:设置batch_first=True
def dem05():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1, batch_first=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(3, 4, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:基础LSTM模型
def dem06_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(2, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')# todo:双向LSTM模型
def dem06_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2,bidirectional=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(4, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(4, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')if __name__ == '__main__':# dem01()# dem02()# dem03()# dem04_1()# dem04_2()# dem04_3()# dem05()# dem06_1()dem06_2()
D:\nlplearning\nlpbase\python.exe D:\nlpcoding\rnncode.py
output tensor([[[ 0.0207, -0.1121, -0.0706, 0.1167, -0.3322, -0.0686],[ 0.1256, 0.1328, 0.2361, 0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168, 0.4734, 0.2420, 0.0349]]],grad_fn=<MkldnnRnnLayerBackward0>)
hn tensor([[[ 0.1501, -0.2106, 0.0213, 0.1309, 0.3074, -0.2038],[ 0.3639, -0.0394, -0.1912, 0.1282, 0.0369, -0.1094],[ 0.1217, -0.0517, 0.1884, -0.1100, -0.5018, -0.4512]],[[ 0.0207, -0.1121, -0.0706, 0.1167, -0.3322, -0.0686],[ 0.1256, 0.1328, 0.2361, 0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168, 0.4734, 0.2420, 0.0349]]],grad_fn=<StackBackward0>)
cn tensor([[[ 0.2791, -0.7362, 0.0501, 0.2612, 0.4655, -0.2338],[ 0.7902, -0.0920, -0.4955, 0.3865, 0.0868, -0.1612],[ 0.2312, -0.3736, 0.4033, -0.1386, -1.0151, -0.5971]],[[ 0.0441, -0.2279, -0.1483, 0.3397, -0.5597, -0.4339],[ 0.2154, 0.4119, 0.4723, 0.4731, -0.0284, -1.1095],[-0.5016, -0.5146, -0.4286, 1.5299, 0.5992, 0.1224]]],grad_fn=<StackBackward0>)Process finished with exit code 0
2 GRU
import torch
import torch.nn as nn# todo:基础GRU
def dem01():gru = nn.GRU(5, 6, 1)input = torch.randn(4, 3, 5)h0 = torch.randn(1, 3, 6)output, hn = gru(input, h0)print(f'output {output}')print(f'hn {hn}')if __name__ == '__main__':dem01()
相关文章:
[自然语言处理]RNN
1 传统RNN模型与LSTM import torch import torch.nn as nntorch.manual_seed(6)# todo:基础RNN模型 def dem01():参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:…...
MySQL(B站CodeWithMosh)——2024.10.11(14)
ZZZZZZ目的ZZZZZZ代码ZZZZZZ重点ZZZZZZ操作(非代码,需要自己手动) 8- CASE运算符The CASE Operator_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1UE41147KC?p62&vd_sourceeaeec77dfceb13d96cce76cc299fdd08 在sql_store中&am…...
Transformer的预训练模型
Transformer的预训练模型有很多,其中一些在自然语言处理(NLP)和计算机视觉等领域取得了巨大成功。以下是一些主要的Transformer预训练模型: 1. BERT (Bidirectional Encoder Representations from Transformers) 简介: BERT 是谷歌推出的双向Transformer模型,专注于编码器…...
手撕单例模式
在Go语言中实现单例模式,通常需要确保一个类只有一个实例,并且提供一个全局访问点。Go语言本身没有类的概念,但可以通过结构体和函数来模拟这种行为。下面是一个简单的手撕单例模式的实现示例: 懒汉式(延迟初始化&…...
UE4 材质学习笔记06(布料着色器/体积冰着色器)
一.布料着色器 要编写一个着色器首先是看一些参考图片,我们需要找出一些布料特有的特征,下面是一个棉织物,可以看到布料边缘的纤维可以捕捉光线使得边缘看起来更亮 下面是缎子和丝绸的图片,与棉织物有几乎相反的效果,…...
人工智能学习框架
人工智能学习框架是指用于开发和训练机器学习和深度学习模型的软件库和工具集。这些框架帮助开发者更高效地构建、训练和部署模型,加速人工智能应用的开发进程。 常见的人工智能学习框架 TensorFlow 由Google开发,是一个开源的深度学习框架,…...
GEE 教程:Landsat TOA数据计算地表温度(LST)
目录 简介 函数 expression(expression, map) Arguments: Returns: Image reduceRegion(reducer, geometry, scale, crs, crsTransform, bestEffort, maxPixels, tileScale) Arguments: Returns: Dictionary 代码 结果 简介 地表温度(Land Surface Temperature,LS…...
Web编程---配置Tomcat
文章目录 一、目的二、原理三、过程1. 解压“apache-tomcat-10.0.27-windows-x64.zip”文件到指定文件夹。2. 配置环境变量3.修改编码方式,防止 Tomcat 控制台出现乱码。4.启动 Tmocat5.打开浏览器,地址栏输入 http://localhost:8080 ,如果看…...
物联网5G模块WIFI模块调式记录(Pico)
调试环境 MCU:Pico1(无wifi版)5G模块:EC800K(iot专用4g卡)WIFI模块:ESP01s(Esp8266芯片)、DX-WF24开发环境:MacBook Pro Sonoma 14.5开发工具:Th…...
中国平安蝉联2024“金融业先锋30”第一名 获金融业ESG最高五星评级
2024年10月15日,中央广播电视总台正式对外发布《金融业ESG行动报告(2024)》(以下简称"《报告》"),并公布了"中国ESG上市公司金融业先锋30"榜单。中国平安凭借在绿色金融、普惠金融、养…...
[图解]题目解析:财务人员最有可能成为业务执行者的是
1 00:00:00,420 --> 00:00:04,760 接下来,是第3章自测题第1部分的第8题 2 00:00:05,090 --> 00:00:08,120 单选,针对以下研究对象 3 00:00:08,900 --> 00:00:11,530 财务人员最有可能成为业务执行者的是 4 00:00:12,800 --> 00:00:15,280…...
零基础学大模型——大模型技术学习过程梳理
“学习是一个从围观到宏观,从宏观到微观的一个过程” 学习大模型技术也有几个月的时间了,之前的学习一直是东一榔头,西一棒槌,这学一点那学一点,虽然弄的乱七八糟,但对大模型技术也算有了一个初步的认识。…...
匹配全国地址的正则表达式工具类
正则表达式,匹配全国五级地址工具类,可以直接放在项目中使用~ 1级:国 (可忽略不填) 2级:**省、**自治区、**直辖市、**特别行政区、(四个直辖市可忽略不填) 3级:**市、**…...
Notepad++ 使用技巧
notepad 高级“查找模式” 1)两个换行换一行 选中为 “扩展(\n, \r, \t, \0, \x…)” ,查找目标里面可以写上\r\n\r\n,替换为\r\n 2)移除空行 查找目标:\r\n\r\n,替换为…...
《语音识别芯片选型全攻略》
《语音识别芯片选型全攻略》 一、语音识别芯片性能评估(一)主控芯片性能评估(二)接口需求分析(三)可靠性评估(四)生产工艺考量(五)湿敏等级判断 二、语音识别…...
【MySQL】VARCHAR和CHAR的区别?
目录 区别存储方式最大长度存取效率 使用场景参考 在MySQL中,VARCHAR和CHAR是两种常用的字符串数据类型,它们各自有不同的特点和适用场景。下面我将和大家一起了解这两种数据类型的区别及使用场景。 区别 存储方式 CHAR(N):定长存储&#…...
SQL Server日期查询常用语句
一、以下是SQL 日期截取 & SQL Server日期比较日期查询常用语句 select CONVERT(varchar, getdate(), 120 ) 2004-09-12 11:06:08 select replace(replace(replace(CONVERT(varchar, getdate(), 120 ),-,), ,),:,) 20040912110608 select COUNVRT(varchar(12) , getdate…...
java地理方位角度计算
计算方位角度 从一个坐标到另一个坐标的方位角度. GIS地理 方位角,正北作为0度基线,顺时针旋转。 /*** GIS方位角度,正北为0度,顺时针旋转** param lat1 坐标1纬度* param lon1 坐标1经度* param lat2 坐标2纬度* param lon2 坐…...
RabbitMQ service is already present - only updating service parameters
Windows下卸载RabbitMQ之后,然后重新注册RabbitMQ服务的时候,报错以下信息: D:\software\rabbitmq-server-4.0.2\rabbitmq_server-4.0.2\sbin>D:\software\rabbitmq-server-4.0.2\rabbitmq_server-4.0.2\sbin\rabbitmq-service.bat install RabbitMQ service is already …...
贵州网站建设提升可见性的策略
贵州网站建设提升可见性的策略 在数字化时代,网站的可见性对企业的成功至关重要。在贵州,随着互联网的发展,越来越多的企业意识到网站建设的重要性。那么,如何有效提升网站的可见性呢?以下是几个关键策略。 **1. 优化…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
Android写一个捕获全局异常的工具类
项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考
目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候,显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...
