当前位置: 首页 > news >正文

[自然语言处理]RNN

1 传统RNN模型与LSTM

import torch
import torch.nn as nntorch.manual_seed(6)# todo:基础RNN模型
def dem01():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加输入的sequence_length
def dem02():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加隐藏层的个数
def dem03():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 2)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:一个一个地向模型输入单词-全零初始化
def dem04_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.zeros(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.zeros(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-全一初始化
def dem04_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.ones(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.ones(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-随机初始化
def dem04_3():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.randn(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.randn(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:设置batch_first=True
def dem05():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1, batch_first=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(3, 4, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:基础LSTM模型
def dem06_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(2, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')# todo:双向LSTM模型
def dem06_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2,bidirectional=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(4, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(4, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')if __name__ == '__main__':# dem01()# dem02()# dem03()# dem04_1()# dem04_2()# dem04_3()# dem05()# dem06_1()dem06_2()
D:\nlplearning\nlpbase\python.exe D:\nlpcoding\rnncode.py 
output tensor([[[ 0.0207, -0.1121, -0.0706,  0.1167, -0.3322, -0.0686],[ 0.1256,  0.1328,  0.2361,  0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168,  0.4734,  0.2420,  0.0349]]],grad_fn=<MkldnnRnnLayerBackward0>)
hn tensor([[[ 0.1501, -0.2106,  0.0213,  0.1309,  0.3074, -0.2038],[ 0.3639, -0.0394, -0.1912,  0.1282,  0.0369, -0.1094],[ 0.1217, -0.0517,  0.1884, -0.1100, -0.5018, -0.4512]],[[ 0.0207, -0.1121, -0.0706,  0.1167, -0.3322, -0.0686],[ 0.1256,  0.1328,  0.2361,  0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168,  0.4734,  0.2420,  0.0349]]],grad_fn=<StackBackward0>)
cn tensor([[[ 0.2791, -0.7362,  0.0501,  0.2612,  0.4655, -0.2338],[ 0.7902, -0.0920, -0.4955,  0.3865,  0.0868, -0.1612],[ 0.2312, -0.3736,  0.4033, -0.1386, -1.0151, -0.5971]],[[ 0.0441, -0.2279, -0.1483,  0.3397, -0.5597, -0.4339],[ 0.2154,  0.4119,  0.4723,  0.4731, -0.0284, -1.1095],[-0.5016, -0.5146, -0.4286,  1.5299,  0.5992,  0.1224]]],grad_fn=<StackBackward0>)Process finished with exit code 0

2 GRU

import torch
import torch.nn as nn# todo:基础GRU
def dem01():gru = nn.GRU(5, 6, 1)input = torch.randn(4, 3, 5)h0 = torch.randn(1, 3, 6)output, hn = gru(input, h0)print(f'output {output}')print(f'hn {hn}')if __name__ == '__main__':dem01()

相关文章:

[自然语言处理]RNN

1 传统RNN模型与LSTM import torch import torch.nn as nntorch.manual_seed(6)# todo:基础RNN模型 def dem01():参数1&#xff1a;input_size 每个词的词向量维度&#xff08;输入层神经元的个数&#xff09;参数2&#xff1a;hidden_size 隐藏层神经元的个数参数3&#xff1a…...

MySQL(B站CodeWithMosh)——2024.10.11(14)

ZZZZZZ目的ZZZZZZ代码ZZZZZZ重点ZZZZZZ操作&#xff08;非代码&#xff0c;需要自己手动&#xff09; 8- CASE运算符The CASE Operator_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1UE41147KC?p62&vd_sourceeaeec77dfceb13d96cce76cc299fdd08 在sql_store中&am…...

Transformer的预训练模型

Transformer的预训练模型有很多,其中一些在自然语言处理(NLP)和计算机视觉等领域取得了巨大成功。以下是一些主要的Transformer预训练模型: 1. BERT (Bidirectional Encoder Representations from Transformers) 简介: BERT 是谷歌推出的双向Transformer模型,专注于编码器…...

手撕单例模式

在Go语言中实现单例模式&#xff0c;通常需要确保一个类只有一个实例&#xff0c;并且提供一个全局访问点。Go语言本身没有类的概念&#xff0c;但可以通过结构体和函数来模拟这种行为。下面是一个简单的手撕单例模式的实现示例&#xff1a; 懒汉式&#xff08;延迟初始化&…...

UE4 材质学习笔记06(布料着色器/体积冰着色器)

一.布料着色器 要编写一个着色器首先是看一些参考图片&#xff0c;我们需要找出一些布料特有的特征&#xff0c;下面是一个棉织物&#xff0c;可以看到布料边缘的纤维可以捕捉光线使得边缘看起来更亮 下面是缎子和丝绸的图片&#xff0c;与棉织物有几乎相反的效果&#xff0c;…...

人工智能学习框架

人工智能学习框架是指用于开发和训练机器学习和深度学习模型的软件库和工具集。这些框架帮助开发者更高效地构建、训练和部署模型&#xff0c;加速人工智能应用的开发进程。 常见的人工智能学习框架 TensorFlow 由Google开发&#xff0c;是一个开源的深度学习框架&#xff0c;…...

GEE 教程:Landsat TOA数据计算地表温度(LST)

目录 简介 函数 expression(expression, map) Arguments: Returns: Image reduceRegion(reducer, geometry, scale, crs, crsTransform, bestEffort, maxPixels, tileScale) Arguments: Returns: Dictionary 代码 结果 简介 地表温度(Land Surface Temperature,LS…...

Web编程---配置Tomcat

文章目录 一、目的二、原理三、过程1. 解压“apache-tomcat-10.0.27-windows-x64.zip”文件到指定文件夹。2. 配置环境变量3.修改编码方式&#xff0c;防止 Tomcat 控制台出现乱码。4.启动 Tmocat5.打开浏览器&#xff0c;地址栏输入 http://localhost:8080 &#xff0c;如果看…...

物联网5G模块WIFI模块调式记录(Pico)

调试环境 MCU&#xff1a;Pico1&#xff08;无wifi版&#xff09;5G模块&#xff1a;EC800K&#xff08;iot专用4g卡&#xff09;WIFI模块&#xff1a;ESP01s&#xff08;Esp8266芯片&#xff09;、DX-WF24开发环境&#xff1a;MacBook Pro Sonoma 14.5开发工具&#xff1a;Th…...

中国平安蝉联2024“金融业先锋30”第一名 获金融业ESG最高五星评级

2024年10月15日&#xff0c;中央广播电视总台正式对外发布《金融业ESG行动报告&#xff08;2024&#xff09;》&#xff08;以下简称"《报告》"&#xff09;&#xff0c;并公布了"中国ESG上市公司金融业先锋30"榜单。中国平安凭借在绿色金融、普惠金融、养…...

[图解]题目解析:财务人员最有可能成为业务执行者的是

1 00:00:00,420 --> 00:00:04,760 接下来&#xff0c;是第3章自测题第1部分的第8题 2 00:00:05,090 --> 00:00:08,120 单选&#xff0c;针对以下研究对象 3 00:00:08,900 --> 00:00:11,530 财务人员最有可能成为业务执行者的是 4 00:00:12,800 --> 00:00:15,280…...

零基础学大模型——大模型技术学习过程梳理

“学习是一个从围观到宏观&#xff0c;从宏观到微观的一个过程” 学习大模型技术也有几个月的时间了&#xff0c;之前的学习一直是东一榔头&#xff0c;西一棒槌&#xff0c;这学一点那学一点&#xff0c;虽然弄的乱七八糟&#xff0c;但对大模型技术也算有了一个初步的认识。…...

匹配全国地址的正则表达式工具类

正则表达式&#xff0c;匹配全国五级地址工具类&#xff0c;可以直接放在项目中使用~ 1级&#xff1a;国 &#xff08;可忽略不填&#xff09; 2级&#xff1a;**省、**自治区、**直辖市、**特别行政区、&#xff08;四个直辖市可忽略不填&#xff09; 3级&#xff1a;**市、**…...

Notepad++ 使用技巧

notepad 高级“查找模式” 1&#xff09;两个换行换一行 选中为 “扩展&#xff08;\n, \r, \t, \0, \x…&#xff09;” &#xff0c;查找目标里面可以写上\r\n\r\n&#xff0c;替换为\r\n 2&#xff09;移除空行 查找目标&#xff1a;\r\n\r\n&#xff0c;替换为&#xf…...

《语音识别芯片选型全攻略》

《语音识别芯片选型全攻略》 一、语音识别芯片性能评估&#xff08;一&#xff09;主控芯片性能评估&#xff08;二&#xff09;接口需求分析&#xff08;三&#xff09;可靠性评估&#xff08;四&#xff09;生产工艺考量&#xff08;五&#xff09;湿敏等级判断 二、语音识别…...

【MySQL】VARCHAR和CHAR的区别?

目录 区别存储方式最大长度存取效率 使用场景参考 在MySQL中&#xff0c;VARCHAR和CHAR是两种常用的字符串数据类型&#xff0c;它们各自有不同的特点和适用场景。下面我将和大家一起了解这两种数据类型的区别及使用场景。 区别 存储方式 CHAR(N)&#xff1a;定长存储&#…...

SQL Server日期查询常用语句

一、以下是SQL 日期截取 & SQL Server日期比较日期查询常用语句 select CONVERT(varchar, getdate(), 120 ) 2004-09-12 11:06:08 select replace(replace(replace(CONVERT(varchar, getdate(), 120 ),-,), ,),:,) 20040912110608 select COUNVRT(varchar(12) , getdate…...

java地理方位角度计算

计算方位角度 从一个坐标到另一个坐标的方位角度. GIS地理 方位角&#xff0c;正北作为0度基线&#xff0c;顺时针旋转。 /*** GIS方位角度&#xff0c;正北为0度&#xff0c;顺时针旋转** param lat1 坐标1纬度* param lon1 坐标1经度* param lat2 坐标2纬度* param lon2 坐…...

RabbitMQ service is already present - only updating service parameters

Windows下卸载RabbitMQ之后,然后重新注册RabbitMQ服务的时候,报错以下信息: D:\software\rabbitmq-server-4.0.2\rabbitmq_server-4.0.2\sbin>D:\software\rabbitmq-server-4.0.2\rabbitmq_server-4.0.2\sbin\rabbitmq-service.bat install RabbitMQ service is already …...

贵州网站建设提升可见性的策略

贵州网站建设提升可见性的策略 在数字化时代&#xff0c;网站的可见性对企业的成功至关重要。在贵州&#xff0c;随着互联网的发展&#xff0c;越来越多的企业意识到网站建设的重要性。那么&#xff0c;如何有效提升网站的可见性呢&#xff1f;以下是几个关键策略。 **1. 优化…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...