单细胞分析 | Cicero+Signac 寻找顺式共可及网络
引言
在本指南[1]中,将介绍如何利用Cicero工具和单细胞ATAC-seq数据来识别共可接近网络。
为了在Seurat(Signac工具使用的格式)和CellDataSet(Cicero工具使用的格式)之间轻松转换数据,将利用GitHub上的SeuratWrappers包提供的转换功能。
数据加载
将采用Satpathy和Granja等人在2019年发表在《Nature Biotechnology》上的研究成果,使用他们发布的包含人类CD34+造血干细胞和祖细胞的单细胞ATAC-seq数据集。这些经过处理的数据可以在NCBI GEO数据库中找到链接:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129785
首先,会加载他们的数据集,并使用Signac工具进行一些常规的预处理工作。
library(Signac)
library(Seurat)
library(SeuratWrappers)
library(ggplot2)
library(patchwork)
# load the object created in the Monocle 3 vignette
bone <- readRDS("cd34.rds")
构建 Cicero 模型
Cicero 工具能够识别共可接近网络(CCANs)。Cicero 的开发团队已经创建了一个特别分支,该分支能够与 Monocle 3 的 CellDataSet 对象协同工作。我们首先需要确保已经安装了这个分支,然后我们将整个骨髓数据集的 Seurat 对象转换成 CellDataSet 格式。
# Install Cicero
if (!requireNamespace("remotes", quietly = TRUE))
install.packages("remotes")
remotes::install_github("cole-trapnell-lab/cicero-release", ref = "monocle3")
library(cicero)
# convert to CellDataSet format and make the cicero object
bone.cds <- as.cell_data_set(x = bone)
bone.cicero <- make_cicero_cds(bone.cds, reduced_coordinates = reducedDims(bone.cds)$UMAP)
探索 Cicero 连接
为了节省时间,将在这里仅用一个染色体来演示如何运行 Cicero,但同样的流程也可以用来在整个基因组中寻找共可接近网络(CCANs)。
接下来,将展示运行 Cicero 的基础步骤。这个流程包含多个环节,每个环节的参数都可以根据您的数据需求从默认设置中调整,以优化 Cicero 算法的性能。强烈推荐访问 Cicero 的官方网站、相关论文和文档,以获取更详尽的信息。
# get the chromosome sizes from the Seurat object
genome <- seqlengths(bone)
# use chromosome 1 to save some time
# omit this step to run on the whole genome
genome <- genome[1]
# convert chromosome sizes to a dataframe
genome.df <- data.frame("chr" = names(genome), "length" = genome)
# run cicero
conns <- run_cicero(bone.cicero, genomic_coords = genome.df, sample_num = 100)
head(conns)
## Peak1 Peak2 coaccess
## 1 chr1-100003337-100003837 chr1-99791719-99792219 0
## 2 chr1-100003337-100003837 chr1-99828699-99829199 0
## 3 chr1-100003337-100003837 chr1-99835542-99836042 0
## 4 chr1-100003337-100003837 chr1-99836217-99836717 0
## 5 chr1-100003337-100003837 chr1-99839576-99840076 0
## 6 chr1-100003337-100003837 chr1-99840640-99841140 0
识别 共可接近网络(CCANs)
既然已经计算出了每个峰值之间的共可接近性得分,现在可以利用 Cicero 工具中的 generate_ccans() 功能,将这些成对的联系整合成更广泛的共可接近网络。
ccans <- generate_ccans(conns)
head(ccans)
## Peak CCAN
## chr1-10009702-10010202 chr1-10009702-10010202 1
## chr1-100151188-100151688 chr1-100151188-100151688 2
## chr1-100164787-100165287 chr1-100164787-100165287 2
## chr1-100165566-100166066 chr1-100165566-100166066 2
## chr1-100202505-100203005 chr1-100202505-100203005 3
## chr1-100215491-100215991 chr1-100215491-100215991 3
将链接整合到 Seurat 对象
能够将 Cicero 识别出的共可接近链接整合进 Seurat 的 ChromatinAssay 对象中。通过 Signac 包中的 ConnectionsToLinks() 函数,可以将 Cicero 的输出转换成适合存储在 ChromatinAssay 对象链接槽的格式,然后利用 Links<- 赋值操作将这些链接添加到对象中。
links <- ConnectionsToLinks(conns = conns, ccans = ccans)
Links(bone) <- links
现在,可以通过对某个区域运行 CoveragePlot() 来可视化这些链接以及 DNA 可及性信息:
CoveragePlot(bone, region = "chr1-40189344-40252549")

Source: https://stuartlab.org/signac/articles/cicero
本文由 mdnice 多平台发布
相关文章:

单细胞分析 | Cicero+Signac 寻找顺式共可及网络
引言 在本指南[1]中,将介绍如何利用Cicero工具和单细胞ATAC-seq数据来识别共可接近网络。 为了在Seurat(Signac工具使用的格式)和CellDataSet(Cicero工具使用的格式)之间轻松转换数据,将利用GitHub上的Seur…...

人工智能创造出大量新型蛋白质
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

Palo Alto Networks Expedition 未授权SQL注入漏洞复现(CVE-2024-9465)
0x01 产品介绍: Palo Alto Networks Expedition 是一款强大的工具,帮助用户有效地迁移和优化网络安全策略,提升安全管理的效率和效果。它的自动化功能、策略分析和可视化报告使其在网络安全领域中成为一个重要的解决方案。 0x02 漏洞描述&am…...
c 语言 sprintf
在C语言中,sprintf是一个非常常用的函数,它用于将格式化的数据写入字符串中。sprintf函数的原型通常定义在stdio.h头文件中。 sprintf函数的原型如下: int sprintf(char *str, const char *format, …); 参数说明: str…...

stm32单片机个人学习笔记10(TIM编码器接口)
前言 本篇文章属于stm32单片机(以下简称单片机)的学习笔记,来源于B站教学视频。下面是这位up主的视频链接。本文为个人学习笔记,只能做参考,细节方面建议观看视频,肯定受益匪浅。 STM32入门教程-2023版 细…...
如何在Android中存储数据?
在Android中存储数据是开发过程中至关重要的一环,根据数据的类型、大小、访问频率及安全性需求,开发者可以选择多种存储方式。以下是Android中存储数据的几种主要方式,每种方式都有其特定的应用场景和优缺点。 一、SharedPreferences Share…...

13.3寸工业三防平板数字化工厂产线数采手持终端
在数字化工厂的建设浪潮中,高效可靠的数据采集终端至关重要。尤其在水处理、食品加工等特殊工业环境下,设备的耐用性和数据安全性面临严峻挑战。传统的平板电脑难以应对复杂的工业现场,而一款性能卓越、坚固耐用的工业三防平板则成为提升生产…...

ssh连接慢的问题或zookeeper远程连接服务超时
问题原因: 在SSH登录过程中,服务器会通过反向DNS查找客户端的主机名,然后与登录的IP地址进行匹配,以验证登录的合法性。如果客户端的IP没有域名或DNS服务器响应缓慢,这可能导致SSH登录过慢。为了解决这个问题…...
perf工具使用指导
linux perf工具使用指导 perf 是 Linux 内核自带的性能分析工具,主要用于分析系统性能瓶颈和程序的性能问题。通过合理使用 perf 工具,可以有效地分析和优化系统性能。 安装 perf 在大多数 Linux 发行版中,perf 工具通常随内核源代码包一起…...

WordPress 禁用上传媒体图片自动生成缩略图及多尺寸图片教程
一、在 设置-媒体-媒体设置 中几个尺寸大小的设置不勾选或设置为 0,如下图: 二、找到主题文件 function.php 文件,打开后,在 <?php 后面添加如下代码: function.php 文件路径一般为:WordPress网站根目录…...

锥线性规划【分布鲁棒、两阶段鲁棒方向知识点】
1 锥线性对偶理论 本部分看似和分布鲁棒、两阶段鲁棒优化没什么关系,但值得优先学习,原因将在最后揭晓。 二阶锥 二阶锥(second-order cone,又称ice-cream/Lorentz cone)的形式为: 非负象限锥 半正定锥 …...

linux环境下的程序设计与git操作
目录 前言: 进度条小程序: 先介绍几个背景知识 代码实现 Git操作 总结 其他指令 前言: 本文将重点介绍1. linux下的程序设计,并使用linux下的几个函数接口。实现一个简单的小程序 2.本着开源精神,进行git操作。…...

Matlab中HybridFcn参数的用法
在 MATLAB 中,HybridFcn 参数允许你在全局优化(如遗传算法 ga 或粒子群算法 particleswarm)之后使用局部优化算法进一步微调解的精确度。HybridFcn 通过在全局优化找到的解基础上,进一步调用局部优化器,如 fmincon、pa…...
Leetcode 3316. Find Maximum Removals From Source String
Leetcode 3316. Find Maximum Removals From Source String 1. 解题思路2. 代码实现 题目链接:3316. Find Maximum Removals From Source String 1. 解题思路 这一题思路上的话就是一个动态规划的题目,我们仿照lcs,考察每一个位置是否可以…...

jeecg3版本的vue,离线启动
jeecg的vue2版本已经停止维护,所以只能用vue3的版本。3版本中使用的是pnpm(npm的增强版本)下载依赖。使用pnpm安装的node_modules,不能直接复制到离线主机中(因为在 pnpm安装过程中,会给依赖的配置文件写死…...

C++的内存管理
[TOC} C的内存管理 各个区储存内容 1.栈 局部变量和在执行函数时,函数中创建的局部变量都会在栈上创建,函数执行结束时会被自动释放。从高地址向低地址储存。 2.堆 是new/malloc/calloc/realloc分配的代码块,需要手动释放。如果程序员没…...

YZ系列工具之YZ09:VBA_Excel之读心术
我给VBA下的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套一部VBA手册,教程分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的…...
嵌入式系统---看门狗
在嵌入式系统中,看门狗定时器(Watchdog Timer,WDT)是一种常用的机制,用于检测和恢复系统在异常情况下的故障。如果系统因为某种原因(如软件死循环)而变得无响应,看门狗定时器可以自动…...
从MySQL5.7迁移到8.0时,有哪些重要的参数调整或新参数需要注意?
从 MySQL 5.7 迁移到 MySQL 8.0 时,有一些重要的参数调整和新参数需要注意。MySQL 8.0 引入了许多新功能和改进,同时也对一些现有参数进行了更改或废弃。 1. lower_case_table_names 说明: 控制表名是否区分大小写。重要性: 在迁移过程中,确…...

完整发布/上传uniapp Ios应用到App Store流程
使用uniapp打包,假如使用app store证书打包出来的ipa文件,需要上传到app store上才能上架。假如你还没有app store证书,还没有打包,你可以参考下面这篇文章,先创建打包证书再继续看这篇上架的教程:https://…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...