深度学习笔记20_数据增强
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
一、我的环境
1.语言环境:Python 3.9
2.编译器:Pycharm
3.深度学习环境:TensorFlow 2.10.0
二、GPU设置
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")
三、加载数据
data_dir = "./data/"
img_height = 224
img_width = 224
batch_size = 32train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
由于原始数据集不包含测试集,因此需要创建一个。使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_ds = val_ds.skip(val_batches // 5)print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
class_names = train_ds.class_names
print(class_names)
#['cat', 'dog']
AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1) plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")
四、数据增强
我们可以使用 tf.keras.layers.experimental.preprocessing.RandomFlip
与tf.keras.
layers.experimental.
preprocessing.RandomRotation
进行数据增强。
tf.keras.layers.experimental.preprocessing.RandomFlip
:水平和垂直随机翻转每个图像。tf.keras.layers.experimental.preprocessing.RandomRotation
:随机旋转每个图像
data_augmentation = tf.keras.Sequential([tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])
第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。
plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = data_augmentation(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0])plt.axis("off")
运行结果:
五、增强方式
方法一:将其嵌入model中
model = tf.keras.Sequential([data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),
])
#这样做的好处是:
# 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
# 注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测
# (Model.predict)时并不会进行增强操作。
方法二:在Dataset数据集中进行数据增强
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNEdef prepare(ds):ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)return ds
运行结果:
train_ds = prepare(train_ds)
六、训练模型
model = tf.keras.Sequential([layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(len(class_names))
])
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
epochs=20
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
运行结果:
Epoch 1/20
14/14 [==============================] - 9s 60ms/step - loss: 0.8157 - accuracy: 0.5452 - val_loss: 0.6570 - val_accuracy: 0.5811
Epoch 2/20
14/14 [==============================] - 0s 32ms/step - loss: 0.5555 - accuracy: 0.7310 - val_loss: 0.4195 - val_accuracy: 0.8311
Epoch 3/20
14/14 [==============================] - 0s 30ms/step - loss: 0.2668 - accuracy: 0.8881 - val_loss: 0.4676 - val_accuracy: 0.8041
Epoch 4/20
14/14 [==============================] - 0s 31ms/step - loss: 0.1672 - accuracy: 0.9310 - val_loss: 0.3413 - val_accuracy: 0.8649
Epoch 5/20
14/14 [==============================] - 0s 30ms/step - loss: 0.1526 - accuracy: 0.9452 - val_loss: 0.2555 - val_accuracy: 0.9054
Epoch 6/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0710 - accuracy: 0.9881 - val_loss: 0.2825 - val_accuracy: 0.9122
Epoch 7/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0278 - accuracy: 0.9976 - val_loss: 0.2849 - val_accuracy: 0.9054
Epoch 8/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0140 - accuracy: 0.9976 - val_loss: 0.2841 - val_accuracy: 0.9122
Epoch 9/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0103 - accuracy: 1.0000 - val_loss: 0.3034 - val_accuracy: 0.9122
Epoch 10/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0060 - accuracy: 1.0000 - val_loss: 0.7403 - val_accuracy: 0.8446
Epoch 11/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0620 - accuracy: 0.9738 - val_loss: 0.2892 - val_accuracy: 0.9054
Epoch 12/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0377 - accuracy: 0.9881 - val_loss: 0.3887 - val_accuracy: 0.8919
Epoch 13/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0312 - accuracy: 0.9881 - val_loss: 0.5183 - val_accuracy: 0.8784
Epoch 14/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0264 - accuracy: 0.9929 - val_loss: 0.7976 - val_accuracy: 0.8784
Epoch 15/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0697 - accuracy: 0.9690 - val_loss: 0.3325 - val_accuracy: 0.8851
Epoch 16/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0270 - accuracy: 0.9952 - val_loss: 0.4877 - val_accuracy: 0.9122
Epoch 17/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0129 - accuracy: 0.9952 - val_loss: 1.3700 - val_accuracy: 0.8378
Epoch 18/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0229 - accuracy: 0.9905 - val_loss: 0.4864 - val_accuracy: 0.9122
Epoch 19/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0231 - accuracy: 0.9952 - val_loss: 0.3220 - val_accuracy: 0.9257
Epoch 20/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0331 - accuracy: 0.9881 - val_loss: 0.4932 - val_accuracy: 0.8919
七、自定义增强函数
import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):seed = (random.randint(0,9), 0)# 随机改变图像对比度stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)return stateless_random_brightness
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = aug_img(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0].numpy().astype("uint8"))plt.axis("off")
八、总结
数据增强类型:
1.图像增强
- 随机旋转
- 随机翻转
- 随机缩放
- 裁剪和调整大小
2.文本数据增强
字符级别:在字符级别,数据增强涉及更改文本数据中的单个字符。
短语级别:在短语级别扩充数据涉及以连贯的方式修改短语或单词组。
3.音频数据增强
噪声注入:我们可以通过简单地使用 numpy 向数据添加一些随机值来增加音频样本的数量。
转移时间:转移时间的想法非常简单。它只是随机将音频向左/向右移动。
改变音高:我们可以使用 librosa 函数改变音高。
改变速度:我们可以使用 librosa 函数以固定速率拉伸音频时间序列。
相关文章:

深度学习笔记20_数据增强
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 一、我的环境 1.语言环境:Python 3.9 2.编译器:Pycharm 3.深度学习环境:TensorFlow 2.10.0 二、GPU设置…...
模板变量与php变量对比做判断
${item.create_name}如何与php变量对比 在PHP中,您可以通过将字符串内嵌到双引号中来将模板变量 ${item.create_name} 与PHP变量进行对比。如果您有一个PHP变量 $phpVariable 并且想要检查它是否与 ${item.create_name} 相同,您可以使用 str_replace 函…...

C语言 | Leetcode C语言题解之第485题最大连续1的个数
题目: 题解: int findMaxConsecutiveOnes(int* nums, int numsSize) {int maxCount 0, count 0;for (int i 0; i < numsSize; i) {if (nums[i] 1) {count;} else {maxCount fmax(maxCount, count);count 0;}}maxCount fmax(maxCount, count);…...

C语言复习概要(六)
公主请阅 1. 深入理解数组与指针在C语言中的应用1.1 数组名的理解 2. 使用指针访问数组3. 一维数组传参的本质4. 冒泡排序的实现5. 二级指针6. 指针数组7. 指针数组模拟二维数组8.总结 1. 深入理解数组与指针在C语言中的应用 数组与指针是C语言的核心概念之一,理解…...

PyQt 入门教程(2)搭建开发环境
文章目录 一、搭建开发环境1、安装PyQt5与pyqt5-tools2、配置QtDesigner3、配置Pyuic4、配置Pyrcc 一、搭建开发环境 1、安装PyQt5与pyqt5-tools PyQt5: PyQt的开发库。Pyqt5-tools: 它是一个包含多种工具的工具包,旨在帮助开发者更方便地使…...

Flink Kubernetes Operator
Flink Kubernetes Operator是一个用于在Kubernetes集群上管理Apache Flink应用的工具。 一、基本概念 Flink Kubernetes Operator允许用户通过Kubernetes的原生工具(如kubectl)来管理Flink应用程序及其生命周期。它简化了Flink应用在Kubernetes集群上的…...

【最新华为OD机试E卷-支持在线评测】字符统计及重排(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...

springboot使用GDAL获取tif文件的缩略图并转为base64
springboot使用GDAL获取tif文件的缩略图并转为base64 首先需要安装gdal:https://blog.csdn.net/qq_61950936/article/details/142880279?spm1001.2014.3001.5501 然后是配置pom.xml文件: <!--处理缩略图的--><dependency><groupId>o…...

Pytorch——pip下载安装pytorch慢的解决办法
一、找到需要下载的pytorch链接 运行:pip install torch1.11.0cu113 torchvision0.12.0cu113 torchaudio0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113。然后得到: 我这里为:https://download.pytorch.org/whl/cu113/t…...

uniapp微信小程序调用百度OCR
uniapp编写微信小程序调用百度OCR 公司有一个识别行驶证需求,调用百度ocr识别 使用了image-tools这个插件,因为百度ocr接口用图片的base64 这里只是简单演示,accesstoken获取接口还是要放在服务器端,不然就暴露了自己的百度项目k…...
Vue3+TS项目---实用的复杂类型定义总结
namespace 概念 在TypeScript中,namespace是一种用于组织代码得结构,主要用于将相关得功能(例如类、接口、函数等)组合在一起。它可以帮助避免命名冲突,尤其是在大项目中。 用法 1.定义命名空间 使用namespace关键…...
尚硅谷rabbitmq2024 工作模式路由篇 第11节 答疑
String exchangeName "test_direct"; /! 创建交换机 人图全 channel.exchangeDeclare(exchangeName,BuiltinExchangeType.DIREcT, b: true, b1: false, b2: false, map: null); /1 创建队列 String queue1Name "test_direct_queue1"; String queue2Name &q…...

HTTP vs WebSocket
本文将对比介绍HTTP 和 WebSocket ! 相关文章: 1.HTTP 详解 2.WebSocket 详解 一、HTTP:请求/响应的主流协议 HTTP(超文本传输协议)是用于发送和接收网页数据的标准协议。它最早于1991年由Tim Berners-Lee提出来&…...

R语言医学数据分析实践-数据读写
【图书推荐】《R语言医学数据分析实践》-CSDN博客 《R语言医学数据分析实践 李丹 宋立桓 蔡伟祺 清华大学出版社9787302673484》【摘要 书评 试读】- 京东图书 (jd.com) R语言编程_夏天又到了的博客-CSDN博客 R编程环境的搭建-CSDN博客 在分析公共卫生数据时,数…...
JavaWeb环境下Spring Boot在线考试系统的优化策略
摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了基于JavaWeb技术的在线考试系统设计与实现的开发全过程。通过分析基于Java Web技术的在线考试系统设计与实现管理的不足,创建了一个计算机管理基于Ja…...

ETL技术在金蝶云星空与旺店通WMS集成中的应用
金蝶云星空数据集成到旺店通WMS的技术案例分享 在数字化转型的背景下,现代企业对系统间的数据集成需求日益增加。本篇文章将以“组装入库>其他入库单-1”方案为例,详细解析如何通过轻易云数据集成平台,实现金蝶云星空与旺店通WMS之间的数…...
【力扣热题100】3194. 最小元素和最大元素的最小平均值【Java】
题目:3194.最小元素和最大元素的最小平均值 你有一个初始为空的浮点数数组 averages。另给你一个包含 n 个整数的数组 nums,其中 n 为偶数。 你需要重复以下步骤 n / 2 次: 从 nums 中移除 最小 的元素 minElement 和 最大 的元素 maxElement…...

机器学习拟合过程
import numpy as np import matplotlib.pyplot as plt# 步骤1: 生成模拟数据 np.random.seed(0) X 2 * np.random.rand(100, 1) y 4 3 * X 2 * X**2 np.random.randn(100, 1)# 步骤2: 定义线性模型 (我们从随机权重开始) w np.random.randn(2, 1) b np.random.randn(1)#…...

如何快速部署一套智能化openGauss测试环境
一、openGauss介绍 openGauss是一款开源关系型数据库管理系统,采用木兰宽松许可证v2发行,允许用户自由地复制、使用、修改和分发软件。openGauss内核深度融合了华为在数据库领域多年的研发经验,结合企业级场景需求,持续构建竞争力…...
【设计模式】深入理解Python中的原型设计模式
深入理解Python中的原型设计模式 在软件开发中,有时需要创建对象的过程非常复杂或者代价较高,而在同一类对象的实例之间有很多重复的属性。为了避免重复构造对象,提升性能和效率,原型设计模式(Prototype Pattern&…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...