深度学习笔记20_数据增强
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
一、我的环境
1.语言环境:Python 3.9
2.编译器:Pycharm
3.深度学习环境:TensorFlow 2.10.0
二、GPU设置
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")
三、加载数据
data_dir = "./data/"
img_height = 224
img_width = 224
batch_size = 32train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
由于原始数据集不包含测试集,因此需要创建一个。使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_ds = val_ds.skip(val_batches // 5)print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
class_names = train_ds.class_names
print(class_names)
#['cat', 'dog']
AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1) plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")
四、数据增强
我们可以使用 tf.keras.layers.experimental.preprocessing.RandomFlip
与tf.keras.
layers.experimental.
preprocessing.RandomRotation
进行数据增强。
tf.keras.layers.experimental.preprocessing.RandomFlip
:水平和垂直随机翻转每个图像。tf.keras.layers.experimental.preprocessing.RandomRotation
:随机旋转每个图像
data_augmentation = tf.keras.Sequential([tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])
第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。
plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = data_augmentation(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0])plt.axis("off")
运行结果:
五、增强方式
方法一:将其嵌入model中
model = tf.keras.Sequential([data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),
])
#这样做的好处是:
# 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
# 注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测
# (Model.predict)时并不会进行增强操作。
方法二:在Dataset数据集中进行数据增强
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNEdef prepare(ds):ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)return ds
运行结果:
train_ds = prepare(train_ds)
六、训练模型
model = tf.keras.Sequential([layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(len(class_names))
])
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
epochs=20
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
运行结果:
Epoch 1/20
14/14 [==============================] - 9s 60ms/step - loss: 0.8157 - accuracy: 0.5452 - val_loss: 0.6570 - val_accuracy: 0.5811
Epoch 2/20
14/14 [==============================] - 0s 32ms/step - loss: 0.5555 - accuracy: 0.7310 - val_loss: 0.4195 - val_accuracy: 0.8311
Epoch 3/20
14/14 [==============================] - 0s 30ms/step - loss: 0.2668 - accuracy: 0.8881 - val_loss: 0.4676 - val_accuracy: 0.8041
Epoch 4/20
14/14 [==============================] - 0s 31ms/step - loss: 0.1672 - accuracy: 0.9310 - val_loss: 0.3413 - val_accuracy: 0.8649
Epoch 5/20
14/14 [==============================] - 0s 30ms/step - loss: 0.1526 - accuracy: 0.9452 - val_loss: 0.2555 - val_accuracy: 0.9054
Epoch 6/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0710 - accuracy: 0.9881 - val_loss: 0.2825 - val_accuracy: 0.9122
Epoch 7/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0278 - accuracy: 0.9976 - val_loss: 0.2849 - val_accuracy: 0.9054
Epoch 8/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0140 - accuracy: 0.9976 - val_loss: 0.2841 - val_accuracy: 0.9122
Epoch 9/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0103 - accuracy: 1.0000 - val_loss: 0.3034 - val_accuracy: 0.9122
Epoch 10/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0060 - accuracy: 1.0000 - val_loss: 0.7403 - val_accuracy: 0.8446
Epoch 11/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0620 - accuracy: 0.9738 - val_loss: 0.2892 - val_accuracy: 0.9054
Epoch 12/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0377 - accuracy: 0.9881 - val_loss: 0.3887 - val_accuracy: 0.8919
Epoch 13/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0312 - accuracy: 0.9881 - val_loss: 0.5183 - val_accuracy: 0.8784
Epoch 14/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0264 - accuracy: 0.9929 - val_loss: 0.7976 - val_accuracy: 0.8784
Epoch 15/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0697 - accuracy: 0.9690 - val_loss: 0.3325 - val_accuracy: 0.8851
Epoch 16/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0270 - accuracy: 0.9952 - val_loss: 0.4877 - val_accuracy: 0.9122
Epoch 17/20
14/14 [==============================] - 0s 29ms/step - loss: 0.0129 - accuracy: 0.9952 - val_loss: 1.3700 - val_accuracy: 0.8378
Epoch 18/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0229 - accuracy: 0.9905 - val_loss: 0.4864 - val_accuracy: 0.9122
Epoch 19/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0231 - accuracy: 0.9952 - val_loss: 0.3220 - val_accuracy: 0.9257
Epoch 20/20
14/14 [==============================] - 0s 28ms/step - loss: 0.0331 - accuracy: 0.9881 - val_loss: 0.4932 - val_accuracy: 0.8919
七、自定义增强函数
import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):seed = (random.randint(0,9), 0)# 随机改变图像对比度stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)return stateless_random_brightness
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = aug_img(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0].numpy().astype("uint8"))plt.axis("off")
八、总结
数据增强类型:
1.图像增强
- 随机旋转
- 随机翻转
- 随机缩放
- 裁剪和调整大小
2.文本数据增强
字符级别:在字符级别,数据增强涉及更改文本数据中的单个字符。
短语级别:在短语级别扩充数据涉及以连贯的方式修改短语或单词组。
3.音频数据增强
噪声注入:我们可以通过简单地使用 numpy 向数据添加一些随机值来增加音频样本的数量。
转移时间:转移时间的想法非常简单。它只是随机将音频向左/向右移动。
改变音高:我们可以使用 librosa 函数改变音高。
改变速度:我们可以使用 librosa 函数以固定速率拉伸音频时间序列。
相关文章:

深度学习笔记20_数据增强
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 一、我的环境 1.语言环境:Python 3.9 2.编译器:Pycharm 3.深度学习环境:TensorFlow 2.10.0 二、GPU设置…...
模板变量与php变量对比做判断
${item.create_name}如何与php变量对比 在PHP中,您可以通过将字符串内嵌到双引号中来将模板变量 ${item.create_name} 与PHP变量进行对比。如果您有一个PHP变量 $phpVariable 并且想要检查它是否与 ${item.create_name} 相同,您可以使用 str_replace 函…...

C语言 | Leetcode C语言题解之第485题最大连续1的个数
题目: 题解: int findMaxConsecutiveOnes(int* nums, int numsSize) {int maxCount 0, count 0;for (int i 0; i < numsSize; i) {if (nums[i] 1) {count;} else {maxCount fmax(maxCount, count);count 0;}}maxCount fmax(maxCount, count);…...

C语言复习概要(六)
公主请阅 1. 深入理解数组与指针在C语言中的应用1.1 数组名的理解 2. 使用指针访问数组3. 一维数组传参的本质4. 冒泡排序的实现5. 二级指针6. 指针数组7. 指针数组模拟二维数组8.总结 1. 深入理解数组与指针在C语言中的应用 数组与指针是C语言的核心概念之一,理解…...

PyQt 入门教程(2)搭建开发环境
文章目录 一、搭建开发环境1、安装PyQt5与pyqt5-tools2、配置QtDesigner3、配置Pyuic4、配置Pyrcc 一、搭建开发环境 1、安装PyQt5与pyqt5-tools PyQt5: PyQt的开发库。Pyqt5-tools: 它是一个包含多种工具的工具包,旨在帮助开发者更方便地使…...

Flink Kubernetes Operator
Flink Kubernetes Operator是一个用于在Kubernetes集群上管理Apache Flink应用的工具。 一、基本概念 Flink Kubernetes Operator允许用户通过Kubernetes的原生工具(如kubectl)来管理Flink应用程序及其生命周期。它简化了Flink应用在Kubernetes集群上的…...

【最新华为OD机试E卷-支持在线评测】字符统计及重排(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...

springboot使用GDAL获取tif文件的缩略图并转为base64
springboot使用GDAL获取tif文件的缩略图并转为base64 首先需要安装gdal:https://blog.csdn.net/qq_61950936/article/details/142880279?spm1001.2014.3001.5501 然后是配置pom.xml文件: <!--处理缩略图的--><dependency><groupId>o…...

Pytorch——pip下载安装pytorch慢的解决办法
一、找到需要下载的pytorch链接 运行:pip install torch1.11.0cu113 torchvision0.12.0cu113 torchaudio0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113。然后得到: 我这里为:https://download.pytorch.org/whl/cu113/t…...

uniapp微信小程序调用百度OCR
uniapp编写微信小程序调用百度OCR 公司有一个识别行驶证需求,调用百度ocr识别 使用了image-tools这个插件,因为百度ocr接口用图片的base64 这里只是简单演示,accesstoken获取接口还是要放在服务器端,不然就暴露了自己的百度项目k…...
Vue3+TS项目---实用的复杂类型定义总结
namespace 概念 在TypeScript中,namespace是一种用于组织代码得结构,主要用于将相关得功能(例如类、接口、函数等)组合在一起。它可以帮助避免命名冲突,尤其是在大项目中。 用法 1.定义命名空间 使用namespace关键…...
尚硅谷rabbitmq2024 工作模式路由篇 第11节 答疑
String exchangeName "test_direct"; /! 创建交换机 人图全 channel.exchangeDeclare(exchangeName,BuiltinExchangeType.DIREcT, b: true, b1: false, b2: false, map: null); /1 创建队列 String queue1Name "test_direct_queue1"; String queue2Name &q…...

HTTP vs WebSocket
本文将对比介绍HTTP 和 WebSocket ! 相关文章: 1.HTTP 详解 2.WebSocket 详解 一、HTTP:请求/响应的主流协议 HTTP(超文本传输协议)是用于发送和接收网页数据的标准协议。它最早于1991年由Tim Berners-Lee提出来&…...

R语言医学数据分析实践-数据读写
【图书推荐】《R语言医学数据分析实践》-CSDN博客 《R语言医学数据分析实践 李丹 宋立桓 蔡伟祺 清华大学出版社9787302673484》【摘要 书评 试读】- 京东图书 (jd.com) R语言编程_夏天又到了的博客-CSDN博客 R编程环境的搭建-CSDN博客 在分析公共卫生数据时,数…...
JavaWeb环境下Spring Boot在线考试系统的优化策略
摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了基于JavaWeb技术的在线考试系统设计与实现的开发全过程。通过分析基于Java Web技术的在线考试系统设计与实现管理的不足,创建了一个计算机管理基于Ja…...

ETL技术在金蝶云星空与旺店通WMS集成中的应用
金蝶云星空数据集成到旺店通WMS的技术案例分享 在数字化转型的背景下,现代企业对系统间的数据集成需求日益增加。本篇文章将以“组装入库>其他入库单-1”方案为例,详细解析如何通过轻易云数据集成平台,实现金蝶云星空与旺店通WMS之间的数…...
【力扣热题100】3194. 最小元素和最大元素的最小平均值【Java】
题目:3194.最小元素和最大元素的最小平均值 你有一个初始为空的浮点数数组 averages。另给你一个包含 n 个整数的数组 nums,其中 n 为偶数。 你需要重复以下步骤 n / 2 次: 从 nums 中移除 最小 的元素 minElement 和 最大 的元素 maxElement…...

机器学习拟合过程
import numpy as np import matplotlib.pyplot as plt# 步骤1: 生成模拟数据 np.random.seed(0) X 2 * np.random.rand(100, 1) y 4 3 * X 2 * X**2 np.random.randn(100, 1)# 步骤2: 定义线性模型 (我们从随机权重开始) w np.random.randn(2, 1) b np.random.randn(1)#…...

如何快速部署一套智能化openGauss测试环境
一、openGauss介绍 openGauss是一款开源关系型数据库管理系统,采用木兰宽松许可证v2发行,允许用户自由地复制、使用、修改和分发软件。openGauss内核深度融合了华为在数据库领域多年的研发经验,结合企业级场景需求,持续构建竞争力…...
【设计模式】深入理解Python中的原型设计模式
深入理解Python中的原型设计模式 在软件开发中,有时需要创建对象的过程非常复杂或者代价较高,而在同一类对象的实例之间有很多重复的属性。为了避免重复构造对象,提升性能和效率,原型设计模式(Prototype Pattern&…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...

Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...