[图形学]蒙特卡洛积分方法介绍及其方差计算
一、简介
本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。
二、蒙特卡洛积分介绍
1. 介绍
蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。
例如,对于目标积分函数:
∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x \tag{1} ∫abf(x)dx(1)
其中 f ( x ) f(x) f(x)很复杂,无法找到解析解。我们可以在 f ( x ) f(x) f(x)的定义域 [ a , b ] [a,b] [a,b]上按照任意的概率密度函数 p ( x ) p(x) p(x)进行采样。并统计采样的随机变量的样本期望:
F N = 1 N ∑ i = 1 N f ( x i ) p ( x i ) (2) F_N = \frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})} \tag{2} FN=N1i=1∑Np(xi)f(xi)(2)
可以保证:
E ( F N ) = ∫ a b f ( x ) d x (3) E(F_N)=\int_{a}^{b}f(x)\rm{d}x \tag{3} E(FN)=∫abf(x)dx(3)
2. 证明
下面证明公式(3)的正确性:
E ( F N ) = E ( 1 N ∑ i = 1 N f ( x i ) p ( x i ) ) = 1 N ∑ i = 1 i = N E ( f ( x i ) p ( x i ) ) E(F_N) = E(\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})}) \\ =\frac{1}{N}\sum_{i=1}^{i=N}E(\frac{f(x_i)}{p(x_{i})}) E(FN)=E(N1i=1∑Np(xi)f(xi))=N1i=1∑i=NE(p(xi)f(xi))
我们令 g ( x ) = f ( x ) p ( x ) g(x)=\frac{f(x)}{p(x)} g(x)=p(x)f(x),那么
E ( F N ) = 1 N ∑ i = 1 i = N E ( g ( x ) ) = 1 N ∗ N ∗ ∫ g ( x ) ∗ p ( x ) d x = ∫ g ( x ) ∗ p ( x ) d x = ∫ f ( x ) d x (4) E(F_N)=\frac{1}{N}\sum_{i=1}^{i=N}E(g(x)) \\ =\frac{1}{N}*N* \int_{}^{}g(x)*p(x){\rm{d}x} \\ = \int{g(x)*p(x)}{\rm{d}}x \\ =\int{f(x)}{\rm{d}x} \tag{4} E(FN)=N1i=1∑i=NE(g(x))=N1∗N∗∫g(x)∗p(x)dx=∫g(x)∗p(x)dx=∫f(x)dx(4)
求证得证。
三、蒙特卡洛积分方差
蒙特卡洛积分算法的收敛程度可以适用其方差(标准差)表示。若其方差收敛速度很快,说明该算法可以适用较少的采样值,得到较高的积分精度,反则反之。下面对蒙特卡积分算法的方差和标准差进行计算。
下面计算蒙特卡洛积分算法的方差:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) (5) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \tag{5} δ2(FN)=δ2(N1∗i=1∑1=N(p(x)f(x)))(5)
根据方差的性质:
δ 2 ( c ∗ X ) = c 2 ∗ δ 2 ( X ) δ 2 ( a ∗ X + b ∗ Y ) = a 2 δ 2 ( X ) + b 2 δ 2 ( Y ) + 2 a b ∗ C O V ( X , Y ) (6) \delta^{2}(c*X) = c^{2}*\delta^{2}(X) \\ \delta^{2}(a*X+b*Y)=a^2\delta^{2}(X)+b^2\delta^{2}(Y)+2ab*COV(X,Y) \tag{6} δ2(c∗X)=c2∗δ2(X)δ2(a∗X+b∗Y)=a2δ2(X)+b2δ2(Y)+2ab∗COV(X,Y)(6)
又因为采样的随机变量 x i x_i xi相互独立,因此:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) = 1 N 2 ∗ ∑ i = 1 i = N δ 2 ( f ( x ) p ( x ) ) = 1 N ∗ δ 2 ( f ( x ) p ( x ) ) (7) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \\ =\frac{1}{N^2}*\sum_{i=1}^{i=N}\delta^{2}(\frac{f(x)}{p(x)}) \\ =\frac{1}{N}*\delta^{2}(\frac{f(x)}{p(x)}) \tag{7} δ2(FN)=δ2(N1∗i=1∑1=N(p(x)f(x)))=N21∗i=1∑i=Nδ2(p(x)f(x))=N1∗δ2(p(x)f(x))(7)
工具公式(7)可知,蒙特卡罗积分方法的方差与采样数 N N N成反比,与 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))成正比。
为了得到更为准确的结果,一方面我们可以增加采样数,即增大 N N N。
另一方面我们可以尽可能地令 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))小一些,由于 f ( x ) f(x) f(x)是我们待求的积分函数,无法进行修改,因此我们可以寻找一个概率密度函数 p ( x ) p(x) p(x),使得 f ( x ) p ( x ) \frac{f(x)}{p(x)} p(x)f(x)的方差尽可能的小。
四、蒙特卡洛积分与差分积分
蒙特卡洛积分和差分积分都是数值积分方法。
与差分积分方法相比,蒙特卡洛方法的计算复杂度与维度无关。它通过随机采样的方式估计积分值,即使维度增加,样本点的生成和积分估计的计算量并不会指数级增长。这意味着蒙特卡洛方法在高维问题中仍然保持高效,具有稳定的性能。
而在差分积分方法中,每增加一个维度,划分的区域数量会大幅增加,使得差分积分方法的计算复杂度呈指数级增长。
相关文章:
[图形学]蒙特卡洛积分方法介绍及其方差计算
一、简介 本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。 二、蒙特卡洛积分介绍 1. 介绍 蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。 例如,对于目标积分函数: ∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x…...
智慧社区Web解决方案:Spring Boot框架探索
1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理基于web的智慧社区设计与实现的相关信息成…...
基于预测算法的航班离港延误系统
毕业设计不知道做什么?想找一个结合算法与应用的项目?那你绝对不能错过这个"基于预测算法的航班离港延误系统"!✈️📊 项目简介: 这个系统专注于航班离港的延误预测,通过强大的神经网络技术对大…...
【汇编语言】寄存器(内存访问)(七)—— CPU提供的栈机制
文章目录 前言1. CPU提供的栈机制2. push指令3. 问题4. 问题的分析与解答5. pop指令结语 前言 📌 汇编语言是很多相关课程(如数据结构、操作系统、微机原理)的重要基础。但仅仅从课程的角度出发就太片面了,其实学习汇编语言可以深…...
webAPI中的节点操作、高级事件
一、节点操作 1.删除节点 node.removeChild(); 方法从node节点中删除一个子节点,返回删除的节点 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widt…...
C++内存对齐机制简介
C内存对齐机制是指数据在内存中按照特定规则进行排列,这个机制可以提高访问效率并且满足硬件访问特性。 C内存对齐机制的一些关键规则如下: 不同类型的数据在内存中的起始地址应该是其大小的倍数。比如,4字节的整型应该存放在地址是4的倍数…...
java集合进阶篇-《List集合》
个人主页→VON 收录专栏→java从入门到起飞 目录 编辑 一、前言 二、List集合简要概述 三、List集合主要函数的应用 四、List集合的遍历 五、思考 一、前言 List集合与Collection集合的相同之处还是挺多的,不过有些小细节又不太一样,其中有一个…...
FPGA图像处理之均值滤波
文章目录 一、什么是图像滤波?1.1 噪声类型1.2 滤波类型 二、均值滤波原理2.1 3*3窗口滑动过程2.2 图像扩展 三、Matlab实现均值滤波四、FPGA实现均值滤波4.1 生成 3*3 矩阵4.2 仿真3*3矩阵4.3 计算均值4.4 仿真均值滤波 一、什么是图像滤波? 图像滤波是…...
高等数学 6.2 定积分在几何学上的应用
文章目录 一、平面图形的面积1.直角坐标情形2.极坐标情形 二、体积1.旋转体体积2.平行截面面积为已知的立体的体积 三、平面曲线的弧长 一、平面图形的面积 1.直角坐标情形 我们已经知道,由曲线 y f ( x ) ( f ( x ) ⩾ 0 ) y f(x) (f(x) \geqslant 0) yf(x)(f…...
缓存常见问题:缓存穿透、雪崩、击穿及解决方案分析
1. 什么是缓存穿透,怎么解决? 缓存穿透是指用户请求的数据在缓存中不存在即没有命中,同时在数据库中也不存在,导致用户每次请求该数据都要去数据库中查询一遍。如果有恶意攻击者不断请求系统中不存在的数据,会导致短时…...
C++:拷贝构造
拷贝构造函数是参数类型为本类的引用的构造函数,它也叫复制构造函数,它只有一个参数。当没有写拷贝构造函数时,会有一个默认的拷贝构造函数。 class AA { public:AA(AA& ra){}} 那么什么时候会调用此函数呢?有以下三种情况 …...
BGP(边界网关协议)
1、网络AS(自治系统) 边界网关协议BGP(Border Gateway Protocol)是一种实现自治系统AS(Autonomous System)之间的路由可达,并选择最佳路由的距离矢量路由协议。 AS是指在一个实体管辖下的拥有…...
Spring 概念汇总
一、Spring中的依赖注入和依赖反转 依赖注入(Dependency Injection) 概念 依赖注入是一种设计模式,它允许在对象创建时将其依赖的对象传递给它,而不是让对象自己去创建或查找依赖对象。在Spring中,依赖注入是控制反转…...
快速在找到函数的实体的方法
当我们写了许多许多的函数,那我们怎么快速的找到他们呢 我们只需要按下ctrl,在点击函数名字就可以快速的找到我们想要的函数...
05 django管理系统 - 部门管理 - 修改部门
04我们已经实现了新增部门的功能,下面开始修改部门模块的实现。 按道理来说,应该是做成弹框样式的,通过ajax悄咪咪的发数据,然后更新前端数据,但是考虑到实际情况,先用页面跳转的方式实现,后面…...
C++初阶——入门
目录 1、C发展历史 2、C版本更新 3、C参考文档 4、C书籍推荐 5、C的程序 6、命名空间 6.1 namespace的作用 6.2 namespace的定义 6.3 namespace的使用 7、C输入&输出 8、缺省参数 9、函数重载 10、引用 10.1 引用的概念和定义 10.2 引用的特性 10.3 引用的使…...
Java基于SSM微信小程序物流仓库管理系统设计与实现(源码+lw+数据库+讲解等)
选题背景 随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景,运用软件工程原理和开发方法,它主要是采用java语言技术和mysql数据库来完成对系统的设计。整个…...
82.【C语言】数据结构之顺序表的初始化和销毁
目录 1.线性表 2.分类 1.静态顺序表:使用定长数组存储元素 代码示例(写入Seqlist.h中) 2.动态顺序表:使用与动态内存管理有关的函数 代码示例(写入Seqlist.h中) 补:数据管理的四个需求:增改删查 3.操作顺序表 1.初始化顺序表 1.不开辟空间 2.开辟空间 1…...
java-推荐一个控制台输出颜色ANSI字符的类
java-推荐一个控制台输出颜色ANSI字符的类 背景代码调用输出 背景 这个类是来自hive的一段代码,大家可以参考一下,这个类名是ColorBuffer 代码 /** Licensed to the Apache Software Foundation (ASF) under one* or more contributor license agreem…...
关于定义结构体别名时 是否加*
在C语言中,使用typedef来定义结构体类型及其指针的别名时,Node和LinkList的声明方式有所不同,这是因为你对它们的目的和用途有不同的设定。 首先,看一下你的代码: typedef struct { int data; int lenght; // 注意&am…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
