将两张图片的不同标记出来
-
差异过于细微,阈值设置不当:您的差异可能是颜色或位置的微小变化,当前的阈值和处理方式可能不足以检测到这些细微差异。
-
图像配准不够精确:由于两张图片内容高度相似,特征点匹配可能存在误差,导致图像对齐不准确,影响差异检测。
-
灰度处理损失了颜色信息:如果差异体现在颜色上,转换为灰度图后,颜色变化可能被忽略。
-
形态学操作和面积过滤参数不合适:形态学处理和面积过滤的参数可能导致小的差异区域被过滤掉。
解决方案
1. 降低阈值,提高敏感度
-
降低阈值:在阈值处理步骤中,将阈值从
30
降低到更小的值,如5
或10
,使得对细微差异更加敏感。_, thresh = cv2.threshold(diff, 5, 255, cv2.THRESH_BINARY)
2. 使用彩色图像进行差异检测
-
直接计算彩色图像的差异:由于差异可能体现在颜色上,使用彩色图像的差异计算会更有效。
# 计算彩色图像的差异 diff_color = cv2.absdiff(img1_aligned, img2_color) # 转换为灰度图 diff_gray = cv2.cvtColor(diff_color, cv2.COLOR_BGR2GRAY) # 阈值处理 _, thresh = cv2.threshold(diff_gray, 5, 255, cv2.THRESH_BINARY)
3. 使用结构相似性(SSIM)
-
SSIM对细微差异更敏感:使用SSIM可以检测到亮度、对比度和结构上的微小变化。
from skimage.metrics import structural_similarity as ssim# 计算SSIM score, diff = ssim(img1_aligned_gray, img2_gray, full=True) diff = (diff * 255).astype("uint8") diff = cv2.bitwise_not(diff) # 反转图像 # 阈值处理 _, thresh = cv2.threshold(diff, 5, 255, cv2.THRESH_BINARY)
注意:需要安装
scikit-image
库:pip install scikit-image
4. 调整形态学操作和面积阈值
-
形态学操作:调整迭代次数和核大小,以保留更多细节。
kernel = np.ones((3, 3), np.uint8) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) thresh = cv2.dilate(thresh, kernel, iterations=1)
-
降低面积过滤阈值:减少
cv2.contourArea()
的阈值,确保小的差异区域也能被标记。if area > 5: # 从50降低到5
5. 验证图像配准效果
-
可视化匹配的特征点:检查特征点匹配是否准确。
# 绘制前50个匹配点 img_matches = cv2.drawMatches(img1_color, keypoints1, img2_color, keypoints2, good_matches[:50], None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) cv2.imshow('Matches', img_matches) cv2.waitKey(0) cv2.destroyAllWindows()
-
尝试其他特征检测器:如
SIFT
或SURF
,但需注意它们的许可证要求。
修改后的完整代码
import cv2
import numpy as np
from skimage.metrics import structural_similarity as ssim# 读取两张图片
img1_color = cv2.imread('find_difference_image1.png') # 待配准的原始图像1
img2_color = cv2.imread('find_difference_image2.png') # 基准的原始图像2# 检查图片是否成功读取
if img1_color is None or img2_color is None:print("错误:无法读取图片。请检查文件路径。")exit()# 将图片转换为灰度图
img1_gray = cv2.cvtColor(img1_color, cv2.COLOR_BGR2GRAY)
img2_gray = cv2.cvtColor(img2_color, cv2.COLOR_BGR2GRAY)# 创建ORB特征检测器
orb = cv2.ORB_create(10000) # 增加特征点数量# 检测并计算特征点和描述子
keypoints1, descriptors1 = orb.detectAndCompute(img1_gray, None)
keypoints2, descriptors2 = orb.detectAndCompute(img2_gray, None)# 创建BFMatcher对象
bf = cv2.BFMatcher(cv2.NORM_HAMMING)# KNN匹配,k=2
matches = bf.knnMatch(descriptors1, descriptors2, k=2)# 过滤匹配结果,应用比值测试(Lowe's ratio test)
good_matches = []
for m, n in matches:if m.distance < 0.75 * n.distance:good_matches.append(m)# 检查是否有足够的匹配点
if len(good_matches) > 10:# 提取匹配的关键点坐标src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)# 计算Homography矩阵M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)# 将img1变换到img2的坐标系h, w = img2_gray.shapeimg1_aligned = cv2.warpPerspective(img1_color, M, (w, h))# 使用SSIM计算差异img1_aligned_gray = cv2.cvtColor(img1_aligned, cv2.COLOR_BGR2GRAY)score, diff = ssim(img1_aligned_gray, img2_gray, full=True)diff = (diff * 255).astype("uint8")diff = cv2.bitwise_not(diff) # 反转图像# 阈值处理_, thresh = cv2.threshold(diff, 5, 255, cv2.THRESH_BINARY)# 使用形态学操作去除噪声和小的差异kernel = np.ones((3, 3), np.uint8)thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)thresh = cv2.dilate(thresh, kernel, iterations=1)# 查找差异区域的轮廓contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 计算逆变换矩阵M_inv = np.linalg.inv(M)# 在原始的img1_color上绘制差异区域for contour in contours:area = cv2.contourArea(contour)if area > 5:# 将轮廓坐标转换为浮点型contour = contour.astype(np.float32)# 使用逆变换矩阵将坐标变换回img1的坐标系contour_transformed = cv2.perspectiveTransform(contour, M_inv)# 将坐标转换为整数contour_transformed = contour_transformed.astype(np.int32)# 绘制轮廓cv2.drawContours(img1_color, [contour_transformed], -1, (0, 0, 255), 2)# 在原始图像2上绘制差异区域for contour in contours:area = cv2.contourArea(contour)if area > 5:cv2.drawContours(img2_color, [contour], -1, (0, 0, 255), 2)# 调整图片大小以便显示img1_original_resized = cv2.resize(cv2.imread('find_difference_image1.png'), (400, 300))img2_original_resized = cv2.resize(cv2.imread('find_difference_image2.png'), (400, 300))img1_diff_resized = cv2.resize(img1_color, (400, 300))img2_diff_resized = cv2.resize(img2_color, (400, 300))# 将四张图片拼接成一张图片top_row = np.hstack((img1_original_resized, img2_original_resized))bottom_row = np.hstack((img1_diff_resized, img2_diff_resized))combined_image = np.vstack((top_row, bottom_row))# 显示组合后的图片cv2.imshow('Original and Difference Images', combined_image)cv2.waitKey(0)cv2.destroyAllWindows()
else:print("匹配点不足,无法计算Homography矩阵。")exit()
进一步的建议
-
检查配准质量:使用
cv2.drawMatches()
可视化特征点匹配,确保配准准确。 -
调整SSIM参数:
ssim()
函数的参数可以调整,如gaussian_weights
、sigma
等,以提高对细微差异的检测能力。 -
尝试其他差异检测方法:如计算颜色直方图的差异,或者使用更高级的图像差异算法。
相关文章:
将两张图片的不同标记出来
差异过于细微,阈值设置不当:您的差异可能是颜色或位置的微小变化,当前的阈值和处理方式可能不足以检测到这些细微差异。 图像配准不够精确:由于两张图片内容高度相似,特征点匹配可能存在误差,导致图像对齐…...

HarmonyOS开发(State模型)
一、State模型概述 FA(Feature Ability)模型:从API 7开始支持的模型,已经不再主推。 Stage模型:从API 9开始新增的模型,是目前主推且会长期演进的模型。在该模型中,由于提供了AbilityStage、Wi…...
在 WPF 中使用 OpenTK:从入门到进阶
一、引言 WPF(Windows Presentation Foundation)是微软推出的用于创建丰富的桌面应用程序用户界面的框架。OpenTK 则为我们提供了强大的图形处理能力,包括 3D 图形渲染、数学计算等功能。将两者结合起来,可以在 WPF 应用程序中实…...

【最新华为OD机试E卷-支持在线评测】水仙花数(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 💻 ACM金牌🏅️团队 | 大厂实习经历 | 多年算法竞赛经历 ✨ 本系列打算持续跟新华为OD-E/D卷的多语言AC题解 🧩 大部分包含 Python / C / Javascript / Java / Cpp 多语言代码 👏 感谢大家的订阅➕ 和 喜欢�…...

C# WinForm 用名字name字符串查找子控件
工作上遇到界面控件太多,需要对一些控件批量处理。虽然可以用代码批量控制,但要么是建立数组集合把所有要处理的控件放进去循环处理,要么是一个一个列出来修改属性。 但我大多数要求改的控件命名上是有规律的,所有只需要循环拼接字…...
Ubuntu下安装并初始化Git同时添加SSH密钥
在 Ubuntu 上可以使用以下命令安装git: sudo apt-get update sudo apt-get install git 在 Ubuntu 下安装好 Git 之后,接下来可以进行一些基本的配置和操作,以便更好地使用 Git。 1. 配置 Git 用户信息 在使用 Git 进行版本控制前&#x…...

好用的AI工具:探索智能生活的无限可能
💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《热点时事》 期待您的关注 目录 引言 一:常用AI工具 1. 语音助手(如Siri、小爱同学) 2. 智…...
-bash: conda: command not found
-bash: conda: command not found 说明当前的终端环境中没有找到 conda 命令,可能是因为 Conda 没有安装,或者当前的环境变量中没有包含 Conda 的路径。 解决方法 确保 Conda 已安装 确认 Conda 路径是否添加到环境变量 如果 Conda 已安装,…...

STM32-CubeIDE用串口通讯
USART串口通讯 一、轮询模式 1.设置所接引脚为UART异步模式 选择完成CTRLS保存。 2.编写测试代码(自动发送hello world) 在mian函数里面编写代码 原函数 调用函数,需要数据类型一致,使用函数通过串口发送数组里面的数据 打开串…...

FloodFill 算法(DFS)
文章目录 FloodFill 算法(DFS)图像渲染岛屿数量岛屿的最大面积被围绕的区域太平洋大西洋水流问题扫雷游戏衣橱整理 FloodFill 算法(DFS) 漫水填充(Flood Fi)算法是一种图像处理算法,在计算机图形学和计算机视觉中被广泛…...

计算机通信与网络实验笔记
1.LINUX通过版本号判断是否为稳定版本 2.计网基础 (CD),默认二层以太网交换机。 (10)物理层是均分(除以),数据链路层及以上是不除的。 3.传输介质: (1&…...
闲聊【干龙头】的重要性
市场面临转势,我们不知道谁会先涨,资金量大的操作必然会提前布局,而我们需要做的就是睁大眼睛,等待最强的那只股票出现,然后闭着眼睛进入就可以了。 追涨操作为什么都出现在大盘大涨情况下。原因简单,不能确…...

Ubuntu22.04安装RTX3080
Ubuntu22.04安装RTX3080 1 安装基础环境 更新依赖包 sudo apt-get update sudo apt-get upgrade2 安装驱动 (1)查看适合的显卡驱动 # 查看可用的驱动 sudo ubuntu-drivers devices# 返回值,推荐版本:nvidia-driver-550 ERROR…...

嵌入式学习-IO进程-Day04
嵌入式学习-IO进程-Day04 进程的函数接口 fork和Vfork 回收进程资源 wait waitpid 退出进程 获取进程号(getpid,getppid) 守护进程 守护进程的特点 创建步骤 exec函数族 线程 概念 线程和进程的区别 线程资源 线程函数接口 创建线程ÿ…...
RAII - 安卓中的智能指针
RAII - 安卓中的智能指针 概念 sp wp RefBase 是什么 system/core/libutils/RefBase.cpp system/core/libutils/include/utils/RefBase.hsystem/core/libutils/StrongPointer.cpp system/core/libutils/include/utils/StrongPointer.hAndroid在标准库之外,自定义…...

linux--库指令
ldd ldd 可执行文件路径 显示依赖的库的查找路径以及是否查找到了。...
展讯方案-内置多张开机logo
1. 开机图片的资源存放在logo分区中,这个分区中可以存放一个xx.bmp文件,也可以存放一个bin文件(1logo.bin,包含多张压缩的图片集合) 2.平台代码中logo.bin是由mk_1ogo_img.py脚本打包,具体如下(…...

Stable Diffusion模型资源合集(附整合包)
(模型资源在ComfyUI、WebUI以及ForgeUI中都通用) 之前的Stable Diffusion笔记受到了不少小伙伴的关注,很感谢大家的建议和支持。有很多小伙伴私信我问我一些AI绘画的模型资源在哪来下载,一般来说有两个网站比较常用,分…...

机器学习|Pytorch实现天气预测
机器学习|Pytorch实现天气预测 🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 电脑系统:Windows11 显卡型号:NVIDIA Quadro P620 语言环境:python 3.9.7 编译器&#x…...
【Kuberntes】k8s权限管理
文章目录 权限管理概述核心概念配置RBAC创建Role和ClusterRole创建RoleBinding和ClusterRoleBinding 默认角色和角色绑定权限的实现注意事项 如何在 Kubernetes 中实现 RBAC 的细粒度权限控制?1. Role和ClusterRole2. RoleBinding和ClusterRoleBinding3. 配置RBAC4.…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...