当前位置: 首页 > news >正文

如何在分布式环境中实现高可靠性分布式锁

目录

一、简单了解分布式锁

(一)分布式锁:应对分布式环境的同步挑战

(二)分布式锁的实现方式

(三)分布式锁的使用场景

(四)分布式锁需满足的特点

二、Redis 实现分布式锁的基本思路(粗糙实现版本)

(一)实现步骤

(二)基本代码展示

(三)上述实现的缺陷

三、健壮分布式锁聚焦

(一)误删问题的分析

问题说明

解决方案

具体实现步骤

具体代码实现

(二)原子性保证

问题场景

解决方案:使用 Lua 脚本

设置锁并设置过期时间(原子操作)

释放锁(原子操作)

Java 调用 Lua 脚本

(三)超时自动解锁

问题描述

传统解决方案

改进方案:锁续期机制

具体实现步骤

Java 实现示例

注意事项

四、总结


随着系统架构逐渐从单机走向分布式,如何在分布式环境下保证线程同步执行成为一个不可忽视的问题。分布式锁作为解决这一问题的关键技术,为分布式系统中的资源共享和任务协调提供了重要支持。选择合适的分布式锁实现方式,可以有效提高系统的可靠性和一致性,确保业务逻辑的正确执行。历 史相关文章回顾:

  • 谈谈Redis分布式锁
  • 分布式锁的几种简单实现方式分析
  • RedLock 与 Redisson 实现分布式锁

一、简单了解分布式锁

在多线程环境下,为了保证同一时间只有一个线程能够执行某段代码,Java 提供了 synchronized 关键字和 ReentrantLock 类作为本地锁的解决方案。这些机制在单个应用或单个 JVM 实例中运行良好,确保了同一进程内的线程同步。但是,随着分布式架构的广泛应用,应用程序通常运行在多个节点上,并且每个节点都有多个线程同时处理任务。在这种情况下,传统的本地锁机制已经无法满足分布式环境下的同步需求。

(一)分布式锁:应对分布式环境的同步挑战

在分布式系统中,应用程序可能运行在多个物理或虚拟的节点上,这意味着相同的资源可能会被不同节点上的多个线程同时访问。为了确保这些线程在不同节点上同步执行,防止资源竞争和数据不一致问题,我们需要使用一种能够跨节点的同步机制——分布式锁

分布式锁是一种用于控制在分布式环境中,某个共享资源在同一时刻只能被一个节点或线程使用的机制。它类似于传统的本地锁,但具有跨节点的协调能力。分布式锁通常由外部的分布式系统组件(如 Redis、Zookeeper、Tair 等)来实现,这些组件提供了高可用的锁服务,确保即使在节点故障或网络分区的情况下,锁的状态依然能够保持一致。

(二)分布式锁的实现方式

分布式锁可以通过多种方式实现,每种方式都有其适用的场景和优缺点。以下是几种常见的分布式锁实现方式(简单直接的实现方式见:分布式锁的几种简单实现方式分析):

  1. 基于 Redis 的分布式锁 Redis 是一种常用的内存数据库,可以通过 SETNX 命令(Set if Not Exists)来实现分布式锁。Redis 锁具有高性能、低延迟的优点,适用于大部分需要快速锁定的场景。通过设置锁的过期时间,可以防止死锁问题。

  2. 基于 Zookeeper 的分布式锁 Zookeeper 是一个分布式协调服务,提供了严格的一致性保证。它通过创建临时有序节点实现分布式锁。Zookeeper 锁的优点是可靠性高,适用于对数据一致性要求高的场景,如分布式事务。

  3. 基于数据库的分布式锁 可以利用数据库的行级锁来实现分布式锁,通过在数据库表中插入一条记录或更新记录的状态来表示加锁。虽然这种方式实现简单,但性能较低,适用于锁争用不激烈的场景。

  4. 基于 Tair 的分布式锁 Tair 是一种高性能分布式缓存系统,也支持分布式锁功能,适用于需要高并发和高可用的场景。

(三)分布式锁的使用场景

分布式锁在分布式系统中有广泛的应用,典型的使用场景如:

  • 分布式任务调度: 确保某个任务在某个时间点只由一个节点执行,防止重复调度。
  • 分布式事务控制: 在多服务参与的分布式事务中,确保事务的各个阶段按照预定顺序执行。
  • 资源竞争 防止多个节点同时修改相同的资源(如数据库记录、缓存数据)导致的数据不一致问题。

(四)分布式锁需满足的特点

特点描述
互斥性确保同一时刻只有一个线程能持有锁,防止多个节点或线程对共享资源的并发访问,保证资源的独占使用。
可重入性允许同一节点上的同一个线程在已持有锁的情况下,能够再次成功获取该锁,避免锁重入时产生死锁。
锁超时通过为锁设置过期时间,防止因线程异常或故障未释放锁而导致的死锁情况,确保系统的稳定性和健壮性。
高性能与高可用性锁的加锁与解锁操作需要高效,以满足高并发需求,并且要确保在节点故障或网络分区等情况下,锁服务依然可用,保障系统的持续运行。
阻塞与非阻塞性支持锁的阻塞和非阻塞模式。在阻塞模式下,线程在锁不可用时等待锁的释放,并在锁可用时及时被唤醒;在非阻塞模式下,线程可以立即返回继续执行其他逻辑。
可扩展性锁机制能够随着系统规模的增长而扩展,支持更多节点和更高并发量,保持系统的性能和可靠性。

二、Redis 实现分布式锁的基本思路(粗糙实现版本)

Redis 是一个高性能的键值存储系统,适合用于实现分布式锁,因为它能够在高并发的场景下提供快速的读写操作。借助 Redis 的 SET 命令及其 NX(不存在则插入)参数,我们可以构建一个简单的分布式锁机制。

(一)实现步骤

  1. 获取锁:通过 SET key value NX EX seconds 命令尝试获取锁。如果 key 不存在,则插入成功,并设置过期时间(EX 参数),表示锁定成功;如果 key 已存在,则表示锁已经被其他客户端持有,获取锁失败。

  2. 解锁:当持有锁的线程完成任务后,可以通过 DEL key 命令删除该 key 来释放锁,从而让其他等待锁的线程有机会获得锁。

  3. 防止死锁:为了防止死锁,在获取锁时设置一个合理的过期时间(TTL),即使由于程序异常未能显式释放锁,锁也会在 TTL 到期后自动释放。

(二)基本代码展示

// 尝试获取锁
if (set(key, 1, "NX", "EX", 30)) {try {// 执行需要加锁的业务逻辑} finally {// 释放锁del(key);}
}

(三)上述实现的缺陷

尽管这种方法简单易用,但它存在几个严重的问题,使得其无法成为一个健壮的分布式锁实现:

  1. 非原子性操作:锁的获取与锁的过期时间设置不是原子操作。假设在 SETNX 成功后,但在设置过期时间之前,程序崩溃或出现异常,那么锁将一直存在,导致其他线程无法获取锁,从而产生死锁。

  2. 锁误解除:当持有锁的线程被阻塞或出现延迟,锁的过期时间到期后自动释放,此时如果有其他线程获取了同一个锁,原本持有锁的线程执行完毕后仍然会执行 DEL 操作,从而误解锁,破坏了其他线程的业务逻辑。

  3. 业务超时自动解锁导致并发问题:由于业务执行时间不确定,如果锁的 TTL 到期,锁会自动释放,可能导致多个线程同时执行临界区代码,从而引发并发问题。

  4. 不可重入性:该实现不支持可重入性,即同一线程无法多次获得同一把锁。如果线程因递归或重复调用需要再次获取锁,会因为锁已经存在而获取失败。

三、健壮分布式锁聚焦

(一)误删问题的分析

问题说明

在分布式锁的实现中,存在一种潜在的风险,即线程在解锁时误删了其他线程持有的锁。具体情况如下:

  1. 线程1持有锁:线程1成功获取了锁并执行了一段业务逻辑。
  2. 线程1阻塞:线程1在执行过程中由于某种原因被阻塞,未能及时释放锁,导致锁的TTL(过期时间)到期,锁自动释放。
  3. 线程2获取锁:此时,线程2尝试获取锁,并成功获得了已经释放的锁。
  4. 线程1解除阻塞:线程1解除阻塞,继续执行并尝试释放锁。
  5. 误删锁:由于线程1并不知道锁已经由线程2重新获取,因此直接执行 DEL 操作,误删了属于线程2的锁。

解决方案

为了解决上述问题,可以在锁中存储一个唯一标识符(例如线程ID或UUID),并在释放锁时检查该标识符是否匹配,从而确保只有持有锁的线程才能成功释放锁。

具体实现步骤

  1. 获取锁时存储标识符:在获取锁时,使用 Redis 的 SET key value NX PX milliseconds 命令,其中 value 是一个唯一标识符(如线程ID或UUID)。这样可以确保在锁存储时记录锁的所有者信息。

  2. 释放锁时校验标识符:在释放锁时,先检查当前锁的值是否与线程的唯一标识符匹配。只有当标识符匹配时,才执行 DEL 操作以释放锁。

具体代码实现

String threadId = UUID.randomUUID().toString(); // 生成唯一标识符
if (set(key, threadId, "NX", "EX", 30)) {try {// 执行业务逻辑} finally {if (threadId.equals(get(key))) {del(key); // 释放锁}}
}

同时,这种方式也能够将分布式锁改造成可重入的分布式锁,在获取锁的时候判断一下是否是当前线程获取的锁,锁标识自增便可。

(二)原子性保证

在分布式锁中,SETNXEXPIRE 操作不是原子性的,可能导致死锁等并发问题。为了解决这个问题,我们可以使用 Lua 脚本来确保这些操作的原子性。

问题场景

  • 非原子性操作SETNX 成功后,如果 EXPIRE 操作未执行(例如由于服务器故障或网络问题),锁可能没有超时时间,从而导致死锁。
  • 误删锁:线程在判断标识符一致后,如果因阻塞导致锁过期,其他线程可能获取锁,而原线程仍然执行解锁操作,误删了新的锁。

解决方案:使用 Lua 脚本

Lua 脚本可以将多个 Redis 操作封装为一个原子操作,确保获取锁、设置过期时间、判断标识符和删除锁的操作按预期执行。Lua 脚本示例:

设置锁并设置过期时间(原子操作)
if (redis.call('setnx', KEYS[1], ARGV[1]) < 1) then   return 0;  -- 获取锁失败
end;
redis.call('expire', KEYS[1], tonumber(ARGV[2]));  -- 设置过期时间
return 1;  -- 获取锁成功
释放锁(原子操作)
if (redis.call('get', KEYS[1]) == ARGV[1]) then    return redis.call('del', KEYS[1]);  -- 释放锁
end; 
return 0;  -- 当前线程不是锁持有者

Java 调用 Lua 脚本

通过 Java 调用 eval 方法执行上述 Lua 脚本,确保 Redis 操作的原子性:

// 获取锁
Object result = jedis.eval(luaScriptForSet, 
Collections.singletonList(key), 
Arrays.asList(threadId, "30"));// 释放锁
Object result = jedis.eval(luaScriptForDel, 
Collections.singletonList(key), 
Collections.singletonList(threadId));

使用 Lua 脚本可以确保分布式锁的关键操作在 Redis 中实现原子性,避免了由于非原子性操作导致的死锁和误删锁等并发问题,从而提升系统的可靠性。

(三)超时自动解锁

超时自动解锁的问题虽然在某些场景下不可避免,但可以通过一些机制来缓解,比如延长 TTL 或者增加锁续期机制。

问题描述

在分布式锁的使用中,如果线程的执行时间超过了锁的 TTL(过期时间),锁会自动释放,这时其他线程可能会获取到锁,而原线程还未执行完毕,可能导致数据不一致或业务逻辑错误。

传统解决方案

延长 TTL:可以通过将 TTL 设置得足够长来避免这种情况,但这可能导致其他线程长时间等待锁,特别是在发生意外宕机时,下一个线程将会阻塞很长时间,这并不优雅。

改进方案:锁续期机制

为了更优雅地解决这个问题,可以给获取锁的线程单独开一个守护线程,检测当前线程的运行情况。当发现锁的 TTL 即将到期时,守护线程可以自动为该锁续期,从而保证业务逻辑能够顺利执行完毕。

具体实现步骤

  1. 启动守护线程:在获取锁后,启动一个守护线程定期检查锁的 TTL 是否即将过期。

  2. 续期机制:守护线程在锁即将过期时,自动向 Redis 发送 PEXPIRE 命令,延长锁的有效时间。

  3. 停止守护线程:在业务逻辑执行完毕并释放锁后,守护线程应该被及时停止,避免不必要的资源消耗。

Java 实现示例

// 获取锁并启动守护线程
if (set(key, threadId, "NX", "EX", 30)) {// 启动守护线程ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);scheduler.scheduleAtFixedRate(() -> {if (threadId.equals(get(key))) {expire(key, 30);  // 续期锁}}, 25, 25, TimeUnit.SECONDS);try {// 执行业务逻辑} finally {if (threadId.equals(get(key))) {del(key);  // 释放锁}scheduler.shutdown();  // 停止守护线程}
}

注意事项

  • 续期间隔:设置合理的续期间隔,通常可以设置为略小于 TTL,例如在 TTL 为 30 秒时,每 25 秒续期一次。

  • 可靠性:确保守护线程可靠地执行续期操作,避免续期失败导致锁过期。

通过为分布式锁增加一个守护线程来实现锁续期机制,可以避免由于线程阻塞导致的超时自动解锁问题,从而确保业务逻辑能够完整执行。这种方法比简单延长 TTL 更加优雅和灵活。

四、总结

 分布式锁确保在分布式环境中,某个共享资源在同一时刻只能被一个节点或线程访问,避免了传统本地锁在多节点环境中的同步问题。分布式锁通常由外部组件(如 Redis、Zookeeper)实现,这些组件提供了高可用的锁服务,确保锁在节点故障或网络分区情况下的可靠性。

常见实现方式:

  • 简单实现利用 Redis 的 SET 命令和 NX(不存在则插入)参数,可以快速实现分布式锁。然而,这种实现存在误删和超时处理等问题。
  • 健壮实现通过使用唯一标识符和 Lua 脚本来确保操作的原子性,可以解决误删和超时问题,提高分布式锁的可靠性。Lua 脚本将锁的设置和释放操作封装为原子操作,避免了非原子性操作带来的并发问题。
  • 看门狗机制通过监控锁的有效期,并在锁即将过期时自动续期,确保业务逻辑在锁的有效期内顺利执行,避免了因锁超时导致的数据不一致问题。

关键特点:

  • 互斥性可重入性锁超时高性能与高可用性阻塞与非阻塞性可扩展性是分布式锁需要满足的基本特点。这些特点确保了锁的有效性和系统的稳定性。

通过选择合适的分布式锁实现方式,可以有效提升系统的可靠性和一致性,确保业务逻辑的正确执行。在实际应用中,需要根据具体场景选择合适的实现方式,并进行适当的优化和调整,以应对分布式环境下的复杂挑战。

相关文章:

如何在分布式环境中实现高可靠性分布式锁

目录 一、简单了解分布式锁 &#xff08;一&#xff09;分布式锁&#xff1a;应对分布式环境的同步挑战 &#xff08;二&#xff09;分布式锁的实现方式 &#xff08;三&#xff09;分布式锁的使用场景 &#xff08;四&#xff09;分布式锁需满足的特点 二、Redis 实现分…...

Vue基础(4)

自定义指令 除了默认设置的核心指令( v-model 和 v-show ), Vue 也允许注册自定义指令。在vue中使用directive来创建自定义指令 钩子函数 指令定义函数提供了几个钩子函数&#xff08;可选&#xff09;&#xff1a; bind: 只调用一次&#xff0c;指令第一次绑定到元素时调用&…...

Redis高阶篇之Redis单线程与多线程

文章目录 0 前言1. 为什么Redis是单线程&#xff1f;1.1 Redis单线程1.2 为什么Redis3时代单线程快的原因1.3 使用单线程原因 2.为什么逐渐加入多线程呢&#xff1f;2.1 如何解决 3.redis6/7的多线程特性和IO多路复用入门3.1主线程和IO线程怎么协作完成请求处理的3.2 Unix网络编…...

【C++】STL——priority_queue优先级队列

目录 前言priority_queue的使用简单使用在OJ中的使用 priority_queue的模拟实现基本功能仿函数在这里插入图片描述 前言 上一节我们说了stack和queue这两种容器适配器&#xff0c;而priority_queue&#xff08;优先级队列&#xff09;同样也是属于容器适配器&#xff0c;它会优…...

大数据新视界 --大数据大厂之大数据在智慧城市建设中的应用:打造智能生活的基石

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

使用枚举来实现策略模式

使用很多if else的场景 public void save(String type,Object data){if("db".equals(type)){saveInDb(data);}else if("file".equals(type)){saveInFile(data);}else if("oss".equals(type)){saveInOss(data);}}使用枚举来解决 public enum Save…...

区块链技术原理

1. 引言 区块链的定义 区块链是一种分布式账本技术&#xff08;Distributed Ledger Technology&#xff0c;DLT&#xff09;&#xff0c;其核心特征是通过密码学的方式将数据打包成一个个区块&#xff0c;按时间顺序依次相连&#xff0c;形成一个不可篡改、公开透明的链式数据…...

Spring Boot 接口数据加解密

今天聊下接口安全问题&#xff0c;涉及到接口的加密和解密 经常和外部单位接口调用梳理了相关技术方案&#xff0c;主要的需求点如下&#xff1a; 1&#xff0c;尽量少改动&#xff0c;不影响之前的业务逻辑 2&#xff0c;考虑到时间紧迫性&#xff0c;可采用对称性加密方式&…...

2018年计算机网络408真题解析

第一题&#xff1a; 解析&#xff1a;TCP/IP体系结构应用层常用协议及其相应的运输层协议 TCP协议是面向连接可靠数据传输服务&#xff0c;UDP无连接不可靠的数据传输服务&#xff0c;IP无连接不可靠的数据连接服务。 FTP协议&#xff0c;SMTP协议和HTTP协议使用TCP协议提供的面…...

Javascript 脚本查找B站限时免费番剧

目录 前言 脚本编写 脚本 前言 B站的一些番剧时不时会“限时免费”&#xff0c;白嫖党最爱&#xff0c;主打一个又占到便宜的快乐。但是在番剧索引里却没有搜索选项可以直接检索“限时免费”的番剧&#xff0c;只能自己一页一页的翻去查看&#xff0c;非常麻烦。 自己找限…...

YoloV10改进策略:主干网络改进|DeBiFormer,可变形双级路由注意力|全网首发

摘要 在目标检测领域,YoloV10以其高效和准确的性能而闻名。然而,为了进一步提升其检测能力,我们引入了DeBiFormer作为YoloV10的主干网络。这个主干网络的计算量比较大,不过,上篇双级路由注意力的论文受到很大的关注,所以我也将这篇论文中的主干网络用来改进YoloV10,卡多…...

C#学习笔记(一)

C#学习笔记&#xff08;一&#xff09; 简介第一章 上位机开发环境之 VS 使用和.NET 平台基础一、安装软件二、创建项目三、第一个Hello world四、解决方案与项目五、Debug 和 Release 的区别六、代码的生产过程七、CLR的其它功能 简介 C# .NET工控上位机开发 在工控领域&…...

MATLAB边缘检测

一、目的&#xff1a; 熟悉边缘检测原理&#xff0c;并运用matlab软件实现图像的canny边缘检测&#xff0c;体会canny边缘检测的优缺点。 二、内容&#xff1a; 编写matlab程序&#xff0c;实现对lena图像的边缘检测&#xff0c;输出程序运行结果。 三、原理或步骤&#x…...

Tortoise SVN 安装汉化教程(乌龟SVN)

1.首先下载 去官网下载 如果下载比较慢的&#xff0c;链接自取 https://pan.quark.cn/s/cb6f2eee3f90 2. 安装Tortoise SVN 无脑next到完成 最后到桌面右键 你就发现svn出来了&#xff0c;但是是英文的&#xff01;&#xff01;&#xff01;&#xff01; 像我这种英文不好的…...

深入了解Spring重试组件spring-retry

在我们的项目中&#xff0c;为了提高程序的健壮性&#xff0c;很多时候都需要有重试机制进行兜底&#xff0c;最多就场景就比如调用远程的服务&#xff0c;调用中间件服务等&#xff0c;因为网络是不稳定的&#xff0c;所以在进行远程调用的时候偶尔会产生超时的异常&#xff0…...

海南聚广众达电子商务咨询有限公司靠谱吗怎么样?

在当今这个数字化浪潮席卷全球的时代&#xff0c;抖音电商以其独特的魅力成为了众多商家争相入驻的新蓝海。而在这片浩瀚的电商海洋中&#xff0c;如何找到一家既专业又可靠的合作伙伴&#xff0c;成为了众多商家心中的一大难题。今天&#xff0c;我们就来深入剖析一下海南聚广…...

Java的魔法世界:面向对象编程(OOP)是什么?

这个嘎嘎重要 面向对象编程&#xff08;OOP&#xff09;是让Java像玩具世界一样&#xff0c;把现实中的东西变成“对象”&#xff0c;然后让这些对象去互动。你可以想象OOP是Java的“魔法世界”&#xff0c;通过创建“对象”&#xff08;Object&#xff09;&#xff0c;让它们有…...

软件测试笔记——接口测试

文章目录 一、概念1.接口测试流程2.URL3.HTTP协议4.RESTful5.案例介绍 二、Postman1.Postman软件2.登录接口调试-获取验证码3.登录接口调试-自动关联数据4.合同上传接口-提交请求数据5.提交参数查询6.批量执行7.接口用例设计8.断言8.参数化三、案例1.项目2.课程添加3.课程列表查…...

东方通 TongRDS V2 配置与开机自启指南及 Spring Boot 集成

东方通 TongRDS V2 配置与开机自启指南及 Spring Boot 集成 文章目录 东方通 TongRDS V2 配置与开机自启指南及 Spring Boot 集成一 简述二 配置 cfg.xml1 启用密码访问2 Spring Boot 连接 TongRDS 三 配置 TongRDS 开机自启1 配置 RdsCenter1&#xff09;设置 RdsCenter.servi…...

在 VS Code 中调试 Tensor 形状不显示的问题及解决方案

文章目录 常见问题解决方案1. 定制类包装和 __repr__ 方法 解释如何应用总结 在使用 VS Code 调试 PyTorch 代码时&#xff0c;可能会遇到一个常见问题&#xff1a;调试时 variables 窗口中不显示 Tensor 的形状信息。这会使得调试时观察数据的结构变得不便&#xff0c;尤其是在…...

Linux 时间获取全面总结

1. 引言 在Linux操作系统中&#xff0c;获取时间是一个基本且重要的功能。本文旨在全面总结Linux系统中获取时间的方法&#xff0c;包括命令行工具和编程接口&#xff0c;帮助读者深入理解Linux时间管理的机制。 2. 命令行工具 2.1 date 命令 date 命令是Linux中最常用的命…...

SQL 自学:游标(Cursors)的理解与应用

在 SQL 中&#xff0c;游标&#xff08;Cursor&#xff09;是一种用于处理从数据库中检索出的多行数据的机制。它允许我们逐行地处理查询结果集&#xff0c;而不是一次性处理整个结果集。 一、游标是什么 游标可以看作是一个指向结果集的指针。通过游标&#xff0c;我们可以在…...

IO多路复用概述与epoll简介

一、引言 在网络编程中&#xff0c;高并发的场景下处理大量连接请求是一项挑战。传统的阻塞式IO模型会让线程在等待数据的过程中陷入停顿&#xff0c;导致系统效率低下。为了解决这个问题&#xff0c;IO多路复用应运而生。它允许一个线程同时监听多个文件描述符&#xff08;如…...

关于region_to_label算子的想法

1&#xff0c;定义&#xff1a;将区域进行编码 2&#xff0c;如何做到的&#xff1a;底层逻辑应该是paint_region。通过一个小的循环&#xff0c;按顺序将区域从灰度值1开始11的往上喷。 3&#xff0c;有什么作用&#xff1a;目前能用到的&#xff0c;是有字典的作用&#xff0…...

uni-app 实现好看易用的抽屉效果

在移动应用开发中&#xff0c;抽屉效果是一种常用的用户界面设计&#xff0c;它能有效地节省空间&#xff0c;同时提供导航和其他功能。本文将介绍如何在uni-app中实现一个好看且易用的抽屉效果&#xff0c;帮助你提升应用的用户体验。 一、什么是抽屉效果&#xff1f; 抽屉效…...

PowerShell 脚本 比较两文件差异(带粗狂进度条)并汇总输出

一上来就放代码 function Compare-FileHex {param ([Parameter(Mandatory$true)][string]$SourceFile,[Parameter(Mandatory$true)][string]$CompareFile,[Parameter(Mandatory$false)][string]$OutputFile,[Parameter(Mandatory$false)][int]$BufferSize 1MB)function Forma…...

学习 UE5 的一些前置操作总结

随着 Unity, Godot 这些引擎都玩抽象&#xff0c;主动捅自己一刀后&#xff0c;UE5 的风头不可谓不盛&#xff0c;本着多学一点免得失业的思路方针&#xff0c;咱也研究了一下 UE5 引擎&#xff0c;然后发现想要开始使用 UE5 &#xff0c;包含了很多前置操作&#xff0c;这里总…...

C#/.NET/.NET Core技术前沿周刊 | 第 10 期(2024年10.14-10.20)

前言 C#/.NET/.NET Core技术前沿周刊&#xff0c;你的每周技术指南针&#xff01;记录、追踪C#/.NET/.NET Core领域、生态的每周最新、最实用、最有价值的技术文章、社区动态、优质项目和学习资源等。让你时刻站在技术前沿&#xff0c;助力技术成长与视野拓宽。 欢迎投稿、推荐…...

Git 基本配置

目录 打开 Git Bash设置用户信息查看配置信息修改电脑名字为常用指令配置别名打开用户目录&#xff0c;创建 .bashrc 文件在 .bashrc 文件中输入如下内容&#xff1a;打开gitBash&#xff0c;执行 source ~/.bashrc 解决GitBash乱码问题打开GitBash执行下面命令${git_home}/etc…...

理工科考研想考计算机,湖南大学、重大、哈工大威海、山东大学,该如何选择?

C哥专业提供——计软考研院校选择分析专业课备考指南规划 计算机对理工科同学来说&#xff0c;还是性价比很高的&#xff0c;具有很大的优势&#xff01; 一、就业前景广阔 高需求行业 在当今数字化时代&#xff0c;计算机技术几乎渗透到了各个领域&#xff0c;无论是互联网…...