LangChain4j系列—OpenAI开发实例
一、引入Maven依赖
1、纯Java
<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-open-ai</artifactId><version>0.35.0</version>
</dependency>
2、Spring boot
<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-open-ai-spring-boot-starter</artifactId><version>0.35.0</version>
</dependency>
二、API Key
要使用OpenAI模型,您需要一个API密钥。你可以在这里创建一个。
如果您没有自己的OpenAI API密钥,不要担心。您可以暂时使用演示密钥,我们为演示目的免费提供:
String apiKey = "demo";
三、创建 OpenAiChatModel
1、纯Java
ChatLanguageModel model = OpenAiChatModel.builder().apiKey(System.getenv("OPENAI_API_KEY"))....build();
这将使用默认模型参数(例如gpt-3.5-turbo模型名称、0.7温度等)创建OpenAiChatModel的实例。通过在生成器中提供值,可以自定义默认模型参数。
2、Spring Boot
配置application.properties:
langchain4j.open-ai.chat-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.chat-model.base-url=...
langchain4j.open-ai.chat-model.custom-headers=...
langchain4j.open-ai.chat-model.frequency-penalty=...
langchain4j.open-ai.chat-model.log-requests=...
langchain4j.open-ai.chat-model.log-responses=...
langchain4j.open-ai.chat-model.logit-bias=...
langchain4j.open-ai.chat-model.max-retries=...
langchain4j.open-ai.chat-model.max-completion-tokens=...
langchain4j.open-ai.chat-model.max-tokens=...
langchain4j.open-ai.chat-model.model-name=...
langchain4j.open-ai.chat-model.organization-id=...
langchain4j.open-ai.chat-model.parallel-tool-calls=...
langchain4j.open-ai.chat-model.presence-penalty=...
langchain4j.open-ai.chat-model.proxy.host=...
langchain4j.open-ai.chat-model.proxy.port=...
langchain4j.open-ai.chat-model.proxy.type=...
langchain4j.open-ai.chat-model.response-format=...
langchain4j.open-ai.chat-model.seed=...
langchain4j.open-ai.chat-model.stop=...
langchain4j.open-ai.chat-model.strict-schema=...
langchain4j.open-ai.chat-model.strict-tools=...
langchain4j.open-ai.chat-model.temperature=...
langchain4j.open-ai.chat-model.timeout=...
langchain4j.open-ai.chat-model.top-p=
langchain4j.open-ai.chat-model.user=...
请参阅上面的一些参数的描述。
此配置将创建OpenAiChatModel bean,它可以由AI服务使用,也可以在需要时自动连接,例如:
@RestController
class ChatLanguageModelController {ChatLanguageModel chatLanguageModel;ChatLanguageModelController(ChatLanguageModel chatLanguageModel) {this.chatLanguageModel = chatLanguageModel;}@GetMapping("/model")public String model(@RequestParam(value = "message", defaultValue = "Hello") String message) {return chatLanguageModel.generate(message);}
}
四、结构化输出
工具和JSON模式都支持结构化输出功能。
1、工具的结构化输出
要为工具启用结构化输出功能,请在构建模型时设置.strictTools(true):
OpenAiChatModel.builder()....strictTools(true).build(),
请注意,这将自动使所有工具参数都是必需的(在json模式中是必需的),并为json模式的每个对象设置additionalProperties=false。这是由于当前OpenAI的限制。
2、JSON模式的结构化输出
要为JSON模式启用结构化输出功能,请在构建模型时设置.responseFormat(“JSON_schema”)和.strictJsonSchema(true):
OpenAiChatModel.builder()....responseFormat("json_schema").strictJsonSchema(true).build(),
在这种情况下,AiServices不会在最后一条UserMessage的末尾追加“You must answer strictly In the following JSON format:…”字符串,而是将从给定的POJO创建JSON模式,并将其传递给LLM。请注意,这仅在方法返回类型为POJO时有效。如果返回类型是其他类型(如枚举或List<String>),则应用旧的行为(“You must answer strictly…”)。在不久的将来,将支持所有返回类型。
五、创建OpenAiStreamingChatModel
1、纯Java
OpenAiStreamingChatModel model = OpenAiStreamingChatModel.builder().apiKey(System.getenv("OPENAI_API_KEY"))....build();
2、Spring Boot
添加配置文件:
langchain4j.open-ai.streaming-chat-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.streaming-chat-model.base-url=...
langchain4j.open-ai.streaming-chat-model.custom-headers=...
langchain4j.open-ai.streaming-chat-model.frequency-penalty=...
langchain4j.open-ai.streaming-chat-model.log-requests=...
langchain4j.open-ai.streaming-chat-model.log-responses=...
langchain4j.open-ai.streaming-chat-model.logit-bias=...
langchain4j.open-ai.streaming-chat-model.max-retries=...
langchain4j.open-ai.streaming-chat-model.max-completion-tokens=...
langchain4j.open-ai.streaming-chat-model.max-tokens=...
langchain4j.open-ai.streaming-chat-model.model-name=...
langchain4j.open-ai.streaming-chat-model.organization-id=...
langchain4j.open-ai.streaming-chat-model.parallel-tool-calls=...
langchain4j.open-ai.streaming-chat-model.presence-penalty=...
langchain4j.open-ai.streaming-chat-model.proxy.host=...
langchain4j.open-ai.streaming-chat-model.proxy.port=...
langchain4j.open-ai.streaming-chat-model.proxy.type=...
langchain4j.open-ai.streaming-chat-model.response-format=...
langchain4j.open-ai.streaming-chat-model.seed=...
langchain4j.open-ai.streaming-chat-model.stop=...
langchain4j.open-ai.streaming-chat-model.strict-schema=...
langchain4j.open-ai.streaming-chat-model.strict-tools=...
langchain4j.open-ai.streaming-chat-model.temperature=...
langchain4j.open-ai.streaming-chat-model.timeout=...
langchain4j.open-ai.streaming-chat-model.top-p=...
langchain4j.open-ai.streaming-chat-model.user=...
六、创建OpenAiModerationModel
1、纯Java
ModerationModel model = OpenAiModerationModel.builder().apiKey(System.getenv("OPENAI_API_KEY"))....build();
2、Spring Boot
langchain4j.open-ai.moderation-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.moderation-model.base-url=...
langchain4j.open-ai.moderation-model.custom-headers=...
langchain4j.open-ai.moderation-model.log-requests=...
langchain4j.open-ai.moderation-model.log-responses=...
langchain4j.open-ai.moderation-model.max-retries=...
langchain4j.open-ai.moderation-model.model-name=...
langchain4j.open-ai.moderation-model.organization-id=...
langchain4j.open-ai.moderation-model.proxy.host=...
langchain4j.open-ai.moderation-model.proxy.port=...
langchain4j.open-ai.moderation-model.proxy.type=...
langchain4j.open-ai.moderation-model.timeout=...
七、创建OpenAiTokenizer
1、纯Java
Tokenizer tokenizer = new OpenAiTokenizer();
// or
Tokenizer tokenizer = new OpenAiTokenizer("gpt-4o");
2、Spring Boot
OpenAiTokenizer bean由Spring Boot启动器自动创建。
相关文章:
LangChain4j系列—OpenAI开发实例
一、引入Maven依赖 1、纯Java <dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-open-ai</artifactId><version>0.35.0</version> </dependency> 2、Spring boot <dependency><groupId&g…...
Java 中简化操作集合的方法
在日常 Java 开发中,我们经常需要操作集合,如 List、Set 和 Map。虽然 Java 提供了丰富的集合框架供开发者使用,但在实际编写业务逻辑时,如何简化集合操作、提高代码可读性和效率,依然是一个经常遇到的问题。特别是随着…...
ArcGIS Pro SDK (十七)宗地结构
ArcGIS Pro SDK (十七)宗地结构 环境:Visual Studio 2022 + .NET6 + ArcGIS Pro SDK 3.0 宗地结构 1 获取活动记录 string errorMessage = await QueuedTask.Run(() => {...
D. Co-growing Sequence
传送门:Problem - 1547D - Codeforces 题意:给定一个 数组 a , 构造一个数组 b ,使得 ( a[i] ^ b[i] ) & ( a[i 1] ^ b[ i 1] ) a[i] ^ b[i] 思路:(二进制题目) 设 a[i] ^ b[i] t 我们要让…...

docker配置加速器
阿里云 控制台》容器镜像服务》镜像工具》镜像加速器 复制地址:https://ywtoq7bz.mirror.aliyuncs.com 到:etc/docker下:vi daemon.json 格式: { "registry-mirrors": ["加速器地址"] } 注࿱…...

JS事件和DOM
1. DOM 1.1 基本概念 DOM,全称 Document Object Model,即文档对象模型。它是 Web 上最常用的 API 之一,是加载在浏览器中的文档模型,可以将文档表示为节点树(或称 DOM 树),其中每个节点代表文…...
CAS 详解
目录 Java 中 CAS 是如何实现的? CAS 算法存在哪些问题? ABA 问题 循环时间长开销大 只能保证一个共享变量的原子操作 Java 中 CAS 是如何实现的? 在 Java 中,实现 CAS(Compare-And-Swap, 比较并交换)操作的一个关键类是Unsafe。 Un…...

AI大模型那么火,教你一键Modelarts玩转开源LlaMA(羊驼)大模型
近日, LlaMA(羊驼) 这个大模型再次冲上热搜! LLaMA(Large Language Model Meta AI),由 Meta AI 发布的一个开放且高效的大型基础语言模型,共有 7B、13B、33B、65B(650 亿)四种版本。…...

Spring AI Alibaba: 支持国产大模型的Spring ai框架
Spring AI :java做ai应用的最好选择 过去,Java在AI应用开发方面缺乏一个高效且易于集成的框架,这限制了开发者快速构建和部署智能应用程序的能力。 Spring AI正是为解决这一问题而生,它提供了一套统一的接口,使得AI功…...

ChatGPT4o、o1 谁才是最佳大模型?
如何选择合适的 ChatGPT 模型?OpenAI 更新细节与 GPTs 的深入解析 随着人工智能的发展,ChatGPT 已成为众多用户的强大助手,广泛应用于写作、编程、学习和商业等多个领域。然而,面对 OpenAI 提供的众多模型(如 GPT-4、…...

[笔记] 关于CreateProcessWithLogonW函数创建进程
函数介绍 https://learn.microsoft.com/zh-cn/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw BOOL CreateProcessWithLogonW([in] LPCWSTR lpUsername,[in, optional] LPCWSTR lpDomain,[in] …...

Ubuntu的Qt编译环境配置
1、找不到C和C编译器 利用run文件安装QT6.8.0和QT5.12.2版本后,打开QtCreator时,找不到编译器。 可在终端中查找gcc和g版本,如果没有就安装。 gcc --version g --version 如果没有就安装: sudo apt-get install gcc sudo apt-…...

12 django管理系统 - 注册与登录 - 登录
为了演示方便,我就直接使用models里的Admin来演示,不再创建用户模型了。 ok,先做基础配置 首先是在base.html中,新增登录和注册的入口 <ul class"nav navbar-nav navbar-right"><li><a href"/ac…...

2020年计算机网络408真题解析
第一题: 解析:OSI参考模型网络协议的三要素 网络协议的三要素:语法 ,语义,同步(时序) 语法:定义收发双方所交换信息的格式 语法:定义收发双方所要完成的操作 网页的加载 …...
速盾:cdn高防服务器防火墙的特性是什么?
CDN高防服务器防火墙是一种专门为互联网应用提供安全防护的网络安全设备。它采用先进的技术和算法,通过对网络流量进行过滤和检测,以防止恶意攻击和非法访问,保障网络服务的可用性和安全性。CDN高防服务器防火墙的特性主要包括以下几个方面&a…...

小程序分包和预加载
一、目的 分包的目的: 提升小程序的首屏加载速度,其原理和PC端网页的路由懒加载非常类似。即当我们第一个打开一个小程序的时候,只加载主包以及一些公共的资源,当调到某个页面的时候,在加载该页面所在的分包…...

【MATLAB 串口调试+虚拟串口测试】
文章目录 前言一、matlab 串口二、测试串口1.从系统中获取串口号2.避免串口打开被占用3. 安装虚拟串口4. 打开串口助手和MATALB 进行测试 总结 前言 提示:这里可以添加本文要记录的大概内容: 项目需要: 提示:以下是本篇文章正文…...
mac 安装最新版nginx
1. clone最新版本源代码: git clone https://github.com/nginx/nginx.git 2. 下载PCRE 没有PCRE那我们就下,下载地址:https://sourceforge.net/projects/pcre/files/pcre/,笔者下载的pcre-8.45.zip,下载之后解压到ngi…...

极氪汽车困局:营销频繁车、产品力不足
“ 极氪汽车的“车上吃火锅”营销活动虽登上热搜,但因频繁忽视老用户和产品力不足的争议,并未赢得消费者好感,反而加剧负面印象。 ” 科技新知 原创 作者丨颜瞾 编辑丨蕨影 近日,背靠吉利集团的极氪…...
Icecream 与 Python 日志库及性能分析整合指南
简介 Icecream 是一个用于简化 Python 调试过程的库,它允许开发者轻松打印变量名和它们的值。Python 的 logging 库则提供了一个强大的日志记录系统,用于跟踪应用程序的运行情况。而性能分析则是评估代码执行效率的重要手段。本指南将介绍如何将 Icecre…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

【若依】框架项目部署笔记
参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作: 压缩包下载:http://download.redis.io/releases 1. 上传压缩包,并进入压缩包所在目录,解压到目标…...