当前位置: 首页 > news >正文

tensorRT安装详解(linux与windows)

目录

tensorRT介绍

前置准备

安装cuda与cudnn

linux

windows

cuda版本查看

下载安装包

linux安装

安装

安装验证

windows安装

安装

环境变量配置

安装验证


tensorRT介绍

有关tensorRT的介绍见

TensorRT简介-CSDN博客

前置准备

安装cuda与cudnn

linux

Linux下安装cuda和对应版本的cudnn_linux怎么在自己的环境中安装cuda和cudnn-CSDN博客

windows

windows安装cuda与cudnn-CSDN博客

cuda版本查看

linux与windows均可使用以下命令查看cuda版本

nvcc -V

下载安装包

进官网查看对应自己cuda版本的tensorRT

TensorRT Download | NVIDIA Developer

官网页面打开如下所示, 每个版本的tensorRT都有对应操作系统与cuda版本的说明

注意,win11只能只有tensorRT10支持

linux下我们以安装tensorRT8为例,如下图所示 ,第一个红色框是cuda11对应的安装包,第二个红色方框是cuda12对应的安装包,找到自己对应cuda版本的安装包即可,建议下载tar包,安装比较方便

同理,windows11下只要tensorRT10支持,如下图所示,仍旧找到自己的安装包下载即可

linux安装

安装

下载好安装包后,将文件解压至 /usr/local,如下所示

 然后将tensorrt的头文件和库文件加入到环境变量中,配置~/.bashrc文件

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/TensorRT-8.5.3.1/lib
export C_INCLUDE_PATH=$C_INCLUDE_PATH:/usr/local/TensorRT-8.5.3.1/include
export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/usr/local/TensorRT-8.5.3.1/include

 添加完路径后使配置文件生效

source ~/.bashrc

安装验证

进入到 /usr/local/TensorRT-8.5.3.1/samples/sampleOnnxMNIST路径下,执行

sudo make

进入/usr/local/TensorRT-8.5.3.1/bin目录,运行可执行文件sample_onnx_mnist,如果编译和运行过程都没有问题则说明tensorrt安装成功,运行结果如下

 

windows安装

安装

首先找到自己cuda的安装路径,打开cmd命令行窗口,输入

which nvcc

如果cuda安装成功,会显示cuda的安装路径

/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.1/bin/nvcc

 然后解压下载的tensorRT安装包,将tensorRT中lib目录和include目录中的文件内容都拷贝到cuda对应的目录文件下

环境变量配置

右键“此电脑”,点击"属性",点击“高级系统设置”,即可打开系统属性面板

也可以在搜索框输入“编辑系统环境变量”,也可打开下述面板

然后点击环境变量

用户变量一栏,点击Path

 点击“新建”,将对应TensorRT解压的文件夹下的bin目录路径,以及cuda安装目录下的lib目录、include目录,以及lib下的x64目录路径设置进去,如下所示

 然后逐步点击“确定”,直到所有面板关闭,一定不要直接点右上角关闭,否则配置会失败

安装验证

打开cmd命令窗口,输入

trtexec --help

如果显示以下帮助信息,说明TensorRT中的trtexec程序可用,否则检查trtexec程序(TensorRT解压安装包的bin目录下)的环境变量是否配置正确

接下来代码验证trtexec是否可成功执行,打开python,写下如下python代码,更多代码细节见

PyTorch模型转换ONNX 入门-CSDN博客

import torch
import torchvision.models as models
import onnx
import onnxruntime# 加载 PyTorch 模型
model = models.resnet18(pretrained=True)
model.eval()# 定义输入和输出张量的名称和形状
input_names = ["input"]
output_names = ["output"]
batch_size = 1
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)# 将 PyTorch 模型转换为 ONNX 格式
torch.onnx.export(model,  # 要转换的 PyTorch 模型torch.randn(input_shape),  # 模型输入的随机张量"resnet18.onnx",  # 保存的 ONNX 模型的文件名input_names=input_names,  # 输入张量的名称output_names=output_names,  # 输出张量的名称dynamic_axes={input_names[0]: {0: "batch_size"}, output_names[0]: {0: "batch_size"}}  # 动态轴,即输入和输出张量可以具有不同的批次大小
)# 加载 ONNX 模型
onnx_model = onnx.load("resnet18.onnx")
onnx_model_graph = onnx_model.graph
onnx_session = onnxruntime.InferenceSession(onnx_model.SerializeToString())# 使用随机张量测试 ONNX 模型
x = torch.randn(input_shape).numpy()
onnx_output = onnx_session.run(output_names, {input_names[0]: x})[0]print(f"PyTorch output: {model(torch.from_numpy(x)).detach().numpy()[0, :5]}")
print(f"ONNX output: {onnx_output[0, :5]}")

如果代码运行不成功,查看pytorch是否安装、onnx模块是否安装、onnxruntime模块是否安装

如果代码运行成功,会在本地输出一个mymodel.onnx文件

接下来打开该文件所在路径,打开cmd,输入

trtexec --onnx=mymodel.onnx --saveEngine=model.trt

如果运行成功,说明TensorRT安装成功

如果这里运行失败,检查环境变量是否配置正确 

参考

ubuntu20.04 安装TensorRT c++库 - Wangtn - 博客园 (cnblogs.com)

TensorRT安装部署指南(Windows10) - 知乎 (zhihu.com)

相关文章:

tensorRT安装详解(linux与windows)

目录 tensorRT介绍 前置准备 安装cuda与cudnn linux windows cuda版本查看 下载安装包 linux安装 安装 安装验证 windows安装 安装 环境变量配置 安装验证 tensorRT介绍 有关tensorRT的介绍见 TensorRT简介-CSDN博客 前置准备 安装cuda与cudnn linux Linux下…...

MYSQL OPTIMIZE TABLE 命令重建表和索引

在 MySQL 中,OPTIMIZE TABLE 命令用于重建表和相关索引,以及回收未使用的空间。这个命令对于维护和优化数据库表的性能非常有用,特别是在进行了大量的数据删除操作之后。OPTIMIZE TABLE 可以减少数据文件的碎片化,确保数据存储更加…...

开发指南075-各种动画效果

方法一、使用动画GIF图标 方法二、使用vue-count-to import CountTo from vue-count-to components: { CountTo }, <count-to :start-val"0" :end-val"num" :duration"num>0?num:1" class"card-panel-num" /> 方法…...

使用 el-upload 如何做到发送一次请求上传多个文件

在使用 Element UI 的 el-upload 组件时&#xff0c;默认情况下每次选择文件都会触发一次上传请求。如果你需要一次性上传多个文件&#xff0c;而不是每个文件都触发一次请求&#xff0c;可以通过一些配置和代码处理来实现。 方法一&#xff1a;通过配置file-list&#xff08;…...

GEE引擎架设好之后进游戏时白屏的解决方法——gee引擎白屏修复

这两天测试GeeM2引擎的服务端&#xff0c;最常见的问题就是点击开始游戏出现白屏&#xff0c;最早还以为是服务端问题&#xff0c;结果是因为升级了引擎&#xff0c;而没有升级NewUI这份文件导致的。解决方法如下&#xff1a; 下载GEE引擎包最新版&#xff0c;&#xff08;可以…...

Linux LVS 通用命令行

LVS&#xff08;Linux Virtual Server&#xff09;是一种基于Linux操作系统的负载均衡技术&#xff0c;它通过网络负载均衡技术将客户端请求分发到多台实际服务器上&#xff0c;以提高系统的性能和可靠性。在LVS中&#xff0c;常用的命令行工具主要是ipvsadm&#xff0c;以及一…...

laravel .env环境变量原理

介绍 对于应用程序运行的环境来说&#xff0c;不同的环境有不同的配置通常是很有用的。Laravel 利用 Vance Lucas 的 PHP 库 DotEnv 使得此项功能的实现变得非常简单。当应用程序收到请求时&#xff0c;.env 文件中列出的所有变量将被加载到 PHP 的超级全局变量 $_ENV 中。 使…...

Nuxt.js 应用中的 app:templatesGenerated 事件钩子详解

title: Nuxt.js 应用中的 app:templatesGenerated 事件钩子详解 date: 2024/10/19 updated: 2024/10/19 author: cmdragon excerpt: app:templatesGenerated 是 Nuxt.js 的一个生命周期钩子,在模板编译到虚拟文件系统(Virtual File System, VFS)之后被调用。这个钩子允许…...

新时代AI桌宠:XGO Rider让你的办公室瞬间高大上

​ XGO Rider Luwu 智能打造了桌面双轮足式机器人 XGO Rider&#xff0c;这款全球首创的轮腿式桌面AI机器人&#xff0c;正在悄然改变我们的办公环境。它不仅是一个高科技玩具&#xff0c;更是一个能大幅提升工作效率和办公室科技感的智能助手。 XGO Rider 新时代“桌宠” micr…...

matlab的resample函数

MATLAB中resample函数用法 - 知乎 (zhihu.com) 主要是经常忘记了重采样时哪个是原采样率&#xff0c;哪个是重采样后的采样率&#xff08;目标采样率&#xff09;。这里记录下&#xff0c;目标采样率在前面&#xff01;...

idea怎么取消自动打开项目

idea设置不自动打开项目 选择File>> Settings 选择Appearance & Behavior >> System Settings 去掉勾选的Reopen last project on startup...

蓄电池在线监测系统 各大UPS铅酸蓄电池监测 保障安全

蓄电池的不断普及&#xff0c;确实推动了蓄电池监控和管理技术的持续升级。蓄电池检测系统的研发为我们带来了诸多好处&#xff0c;这些好处主要体现在以下几个方面&#xff1a; 一、提高蓄电池管理的智能化水平 蓄电池检测系统通过实时监测蓄电池的电压、电流、温度等关键参数…...

Python基础Day13

1.字符串 count(x)统计x出现的次数 split(m,n)以括号内的m为分隔符&#xff0c;将字符串分开n1个字符串 strip删除两端的空格 lstrip删除左边空格 rstrip删除右边空格 join(m)以m为分隔符&#xff0c;将分割开的字符串组合成一个新的字符串 max&#xff08;&#xff09;/min&am…...

有趣的css - 跷跷板加载动画

大家好&#xff0c;我是 Just&#xff0c;这里是「设计师工作日常」&#xff0c;今天分享的是使用 css 模拟一个跷跷板效果的加载动画效果。 《有趣的css》系列最新实例通过公众号「设计师工作日常」发布。 目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面…...

与机器学习的邂逅--自适应神经网络结构的深度解析

引言 随着人工智能的发展&#xff0c;神经网络已成为许多应用领域的重要工具。自适应神经网络&#xff08;Adaptive Neural Networks&#xff0c;ANN&#xff09;因其出色的学习能力和灵活性&#xff0c;逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理…...

用python怎么实现办公自动化【批量生成出货清单】

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…...

【Qt】控件——Qt输入类控件、常见的输入类控件、输入类控件的使用、Line Edit、Text Edit、Combo Box、Spin Box

文章目录 Qt5. Qt显示类控件Line EditText EditCombo BoxSpin BoxQDateTimeEditDialSlider Qt 5. Qt显示类控件 Line Edit QLineEdit 用于表示单行输入框。可以输入一段文本&#xff0c;但是不能换行。 属性说明text输入框中的文本inputMask输入内容格式约束maxLength最大长度…...

单臂交换知识点

要求&#xff1a;pc1要与pc2 ping通 命令&#xff1a; LSW1命令解析&#xff1a; system-view: 这个命令用于进入交换机的全局配置模式。在这个模式下&#xff0c;用户可以配置设备的全局设置。 vlan batch 10 20: 创建VLAN 10和VLAN 20。VLAN&#xff08;虚拟局域网&#x…...

CentOS7 上安装GitLab的经历

一、安装必要的基础环境 1.安装依赖包 [rootgitlab-server ~]#yum install curl policycoreutils openssh-server openssh-clients postfix wget git patch -y [rootgitlab-server ~]# systemctl start postfix 2.配置yum源(由于网络问题&#xff0c;国内用户请使用清华大学…...

用python-pptx轻松统一调整演示文档配色方案

哈喽,大家好,我是木头左! 安装与准备:python-pptx入门 确保你的Python环境中已经安装了python-pptx库。如果没有,可以通过pip进行快速安装: pip install python-pptx此外,对于PPT文档的操作,了解一些基本的PowerPoint概念是有帮助的,比如幻灯片母版(Slide Master)…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

Linux基础开发工具——vim工具

文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...