当前位置: 首页 > news >正文

高等数学 5.5 反常积分的审敛法 Γ函数

文章目录

一、无穷限反常积分的审敛法

定理1 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+) 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0.若函数
F ( x ) = ∫ a x f ( t ) d t F(x) = \int_a^x f(t) \mathrm{d}t F(x)=axf(t)dt
[ a , + ∞ ) [a, +\infty) [a,+) 上有上界,则反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x a+f(x)dx 收敛。

定理2(比较审敛原理) 设函数 f ( x ) f(x) f(x) g ( x ) \mathrm{g}(x) g(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+) 上连续。如果 0 ⩽ f ( x ) ⩽ g ( x ) ( a ⩽ x < + ∞ ) 0 \leqslant f(x) \leqslant \mathrm{g}(x)(a \leqslant x < +\infty) 0f(x)g(x)(ax<+) 并且 ∫ a + ∞ g ( x ) d x \displaystyle \int_a^{+\infty} \mathrm{g}(x) \mathrm{d}x a+g(x)dx 收敛,那么 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x a+f(x)dx 也收敛;如果 0 ⩽ g ( x ) ⩽ f ( x ) ( a ⩽ x < + ∞ ) 0 \leqslant \mathrm{g}(x) \leqslant f(x)(a \leqslant x < +\infty) 0g(x)f(x)(ax<+) ,并且 ∫ a + ∞ g ( x ) d x \displaystyle \int_a^{+\infty} \mathrm{g}(x) \mathrm{d}x a+g(x)dx 发散,那么 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x a+f(x)dx 也发散。

定理3(比较审敛法1) 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) ( a > 0 ) [a, +\infty) (a > 0) [a,+)(a>0) 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0 .如果存在常数 M > 0 M > 0 M>0 p > 1 p > 1 p>1 ,使得 f ( x ) ⩽ M x p ( a ⩽ x < + ∞ ) f(x) \leqslant \cfrac{M}{x^p}(a \leqslant x < +\infty) f(x)xpM(ax<+) ,那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x a+f(x)dx 收敛;如果存在常数 N > 0 N > 0 N>0 使得 f ( x ) ⩾ N x ( a ⩽ x < + ∞ ) f(x) \geqslant \cfrac{N}{x}(a \leqslant x < +\infty) f(x)xN(ax<+),那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x a+f(x)dx 发散。

定理4(极限审敛法1) 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+) 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0 。如果存在常数 p > 1 p > 1 p>1 ,使得 lim ⁡ x → + ∞ x p f ( x ) = c < + ∞ \lim\limits_{x \to +\infty} x^p f(x) = c < +\infty x+limxpf(x)=c<+,那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x a+f(x)dx 收敛;如果 lim ⁡ x → + ∞ x f ( x ) = d > 0 \lim\limits_{x \to +\infty} x f(x) = d > 0 x+limxf(x)=d>0 (或 lim ⁡ x → + ∞ x f ( x ) = + ∞ \lim\limits_{x \to +\infty} x f(x) = +\infty x+limxf(x)=+),那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x a+f(x)dx 发散。

定理5 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+) 上连续。如果反常积分
∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty} |f(x)| \mathrm{d}x a+f(x)dx
收敛,那么反常积分
∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x) \mathrm{d}x a+f(x)dx
也收敛。

通常称满足定理5条件的反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x a+f(x)dx 绝对收敛。定理5可简单的表述为:绝对收敛的反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x a+f(x)dx 必定收敛。

二、无界函数的反常积分审敛法

定理6(比较审敛法2) 设函数 f ( x ) f(x) f(x) 在区间 ( a , b ] (a, b] (a,b] 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0 x = a x = a x=a f ( x ) f(x) f(x) 的瑕点。如果存在常数 M > 0 M > 0 M>0 q < 1 q < 1 q<1,使得
f ( x ) ⩽ M ( x − a ) q ( a < x ⩽ b ) , f(x) \leqslant \cfrac{M}{(x - a)^q} \quad (a < x \leqslant b), f(x)(xa)qM(a<xb),
那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x abf(x)dx 收敛;如果存在常数 N > 0 N > 0 N>0 ,使得
f ( x ) ⩾ N x − a ( a < x ⩽ b ) , f(x) \geqslant \cfrac{N}{x - a} \quad (a < x \leqslant b), f(x)xaN(a<xb),
那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x abf(x)dx 发散。

定理7(极限审敛法2) 设函数 f ( x ) f(x) f(x) 在区间 ( a , b ] (a, b] (a,b] 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0 x = a x = a x=a f ( x ) f(x) f(x) 的瑕点。如果存在常数 0 < q < 1 0 < q < 1 0<q<1,使得
lim ⁡ x → a + ( x − a ) q f ( x ) \lim_{x \to a^+} (x - a)^q f(x) xa+lim(xa)qf(x)
存在,那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x abf(x)dx 收敛;如果
lim ⁡ x → a + ( x − a ) f ( x ) = d > 0 ( 或 lim ⁡ x → a + ( x − a ) f ( x ) = + ∞ ) , \lim_{x \to a^+} (x - a) f(x) = d > 0 \quad (或 \lim_{x \to a^+} (x - a) f(x) = +\infty), xa+lim(xa)f(x)=d>0(xa+lim(xa)f(x)=+),
那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x abf(x)dx 发散。

三、 Γ \Gamma Γ 函数

Γ \Gamma Γ 函数的定义如下:
Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x ( s > 0 ) \Gamma (s) = \int_0^{+\infty} \mathrm{e}^{-x} x^{s - 1} \mathrm{d}x \quad (s > 0) Γ(s)=0+exxs1dx(s>0)

Γ 函数 \Gamma 函数 Γ函数 的几个重要性质:

  1. 递推公式 Γ ( s + 1 ) = s Γ ( s ) ( s > 0 ) \Gamma (s + 1) = s \Gamma(s) \quad (s > 0) Γ(s+1)=sΓ(s)(s>0)
    一般地,对任何正整数 n n n ,有
    Γ ( n + 1 ) = n ! \Gamma(n + 1) = n! Γ(n+1)=n!
    所以我们可以把 Γ \Gamma Γ 函数看成是阶乘的推广。

  2. s → 0 + s \to 0^+ s0+ 时, Γ ( s ) → + ∞ \Gamma(s) \to +\infty Γ(s)+

  3. Γ ( s ) Γ ( 1 − s ) = π sin ⁡ π s ( 0 < s < 1 ) \Gamma(s) \Gamma(1 - s) = \cfrac{\pi}{\sin{\pi s}} (0 < s < 1) Γ(s)Γ(1s)=sinπsπ(0<s<1) .
    这个公式称为余元公式

原文链接:高等数学 5.5 反常积分的审敛法 Γ \Gamma Γ函数

相关文章:

高等数学 5.5 反常积分的审敛法 Γ函数

文章目录 一、无穷限反常积分的审敛法二、无界函数的反常积分审敛法三、 Γ \Gamma Γ 函数 一、无穷限反常积分的审敛法 定理1 设函数 f ( x ) f(x) f(x) 在区间 [ a , ∞ ) [a, \infty) [a,∞) 上连续&#xff0c;且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0.若函数 F (…...

宝塔安装ffmpeg的方法

宝塔安装ffmpeg的方法 wget http://download.bt.cn/install/ext/ffmpeg.sh && sh ffmpeg.sh安装完后可输入以下命令是否安装成功&#xff1a; ffmpeg -version...

案例分享-优秀蓝色系UI界面赏析

蓝色UI设计界面要提升舒适度&#xff0c;关键在于色彩搭配与对比度。选择柔和的蓝色调作为主色&#xff0c;搭配浅灰或白色作为辅助色&#xff0c;能营造清新、宁静的氛围。同时&#xff0c;确保文字与背景之间有足够的对比度&#xff0c;避免视觉疲劳&#xff0c;提升阅读体验…...

陪诊小程序之uniapp(从入门到精通)

1.uniapp如何使用vue3编写页面 <template><view class"content"><navbar name"navbar组件"></navbar><image class"logo" src"/static/logo.png"></image><view class"text-area"&…...

深度学习(一)基础:神经网络、训练过程与激活函数(1/10)

深度学习基础&#xff1a;神经网络、训练过程与激活函数 引言&#xff1a; 深度学习作为机器学习的一个子领域&#xff0c;近年来在人工智能的发展中扮演了举足轻重的角色。它通过模仿人脑的神经网络结构&#xff0c;使得计算机能够从数据中学习复杂的模式和特征&#xff0c;…...

源代码加密技术的一大新方向!

在当今这个信息爆炸的时代&#xff0c;企业所面临的数据安全挑战日益严峻。传统的文档加密方法已经无法满足日益复杂的安全需求。幸运的是&#xff0c;SDC沙盒加密系统以其革命性的安全理念和先进技术&#xff0c;为企业提供了一个更可靠、更高效的数据保护方案。 传统加密方案…...

SVN——常见问题

基本操作 检出 提交 更新 显示日志 撤销本地修改 撤销已提交内容 恢复到指定版本 添加忽略 修改同一行 修改二进制文件...

JavaCV 图像灰度化处理

&#x1f9d1; 博主简介&#xff1a;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/literature?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编程&#xff0c;…...

基于Multisim三极管B放大系数放大倍数测量电路设计(含仿真和报告)

【全套资料.zip】三极管B放大系数放大倍数测量电路电路设计Multisim仿真设计数字电子技术 文章目录 功能一、Multisim仿真源文件二、原理文档报告资料下载【Multisim仿真报告讲解视频.zip】 功能 1.用三个数码管显示B的大小&#xff0c;分别显示个位、十位和百位。 2.显示范围…...

Molmo模型实战

安装pip文件 conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=11.8 -c pytorch -c nvidiapip install ...

免费开源的微信开发框架

近年来&#xff0c;随着人工智能技术的快速发展&#xff0c;聊天机器人在各个领域得到了广泛的应用。在社交媒体中&#xff0c;自动回复成为了一个流行的功能&#xff0c;让用户可以方便地与机器人进行互动。gewe框架&#xff0c;一个开源的微信聊天机器人框架&#xff0c;实现…...

波形的变化和信号的产生1+multisim仿真

目录 1.正弦波振荡电路 1.1RC正弦波振荡电路 1.1.1RC串并联选频网络 1.1.2RC桥式正弦波振荡电路 1.1.4LC正弦波振荡电路 1.1.3石英晶体正弦波振荡电路 2.电压比较器 2.1概述 2.1.1基本概念 2.2电压比较器的种类 2.2.1过零比较器 2.2.2一般单限比较器 2.2.3滞回比较…...

【FAQ】HarmonyOS SDK 闭源开放能力 —Map Kit(3)

1.问题描述&#xff1a; compatibleSdkVersion升级到5.0.0&#xff08;12&#xff09;之后&#xff0c;调用坐标系转换API&#xff1a;map.convertCoordinate(mapCommon.CoordinateType.WGS84, mapCommon.CoordinateType.GCJ02, { longitude: location.longitude, latitude:…...

电脑微信多开方法,保姆级教学,超简单!

文章目录 前言方法教学 前言 大家在日常生活中一般都会有多个微信号或QQ号&#xff0c;但大部分人只有一部手机和一台电脑&#xff0c;这就导致每次都需要来回切换不同的账号&#xff0c;非常麻烦&#xff1b;QQ还好&#xff0c;在电脑上可以登陆多个账号&#xff0c;但微信只能…...

【Mysql】-锁,行级锁

Mysql mysql中的行锁 在 MySQL 的 InnoDB 存储引擎中&#xff0c;行级锁通常是加在索引上的&#xff0c;而不是直接加在数据行上。这种机制是基于索引的锁定策略&#xff0c;具体来说&#xff1a; 主键索引&#xff1a;如果查询更新使用了主键进行查找&#xff0c;InnoDB 会直…...

手机功耗技术领域

手机功耗技术领域 器件 器件-电池 提升电池能量密度 提升正极电压、升级负极材料正极电压方面&#xff0c;目前行业还是以4.5V体系为主&#xff1b;4.53V体系预计24-25年落地&#xff1b;负极材料方面&#xff0c;石墨体系每年2%能量密度提升迭代&#xff1b; 掺硅方案目前…...

Golang | Leetcode Golang题解之第493题翻转对

题目&#xff1a; 题解&#xff1a; type fenwick struct {tree []int }func newFenwickTree(n int) fenwick {return fenwick{make([]int, n1)} }func (f fenwick) add(i int) {for ; i < len(f.tree); i i & -i {f.tree[i]} }func (f fenwick) sum(i int) (res int)…...

linux笔记(yum本地源仓库搭建)

一、准备工作 安装必要的软件包 在大多数 Linux 发行版中&#xff0c;Yum 已经默认安装。如果系统中没有安装&#xff0c;可以根据发行版的包管理器进行安装。 准备本地源文件 可以是光盘镜像&#xff08;如果是从光盘安装系统&#xff09;&#xff0c;或者是已经下载好的系…...

K8S系列-Kubernetes网络

一、Kubernetes网络模型 ​ Kubernetes网络模型设计的一个基础原则是&#xff1a;每个Pod都拥有一个独立的IP地址&#xff0c;并假定所有Pod都在一个可以直接连通的、扁平的网络空间中&#xff0c;不管它们是否运行在同一个Node&#xff08;宿主机&#xff09;中&#xff0c;都…...

Excel 对数据进行脱敏

身份证号脱敏&#xff1a;LEFT(A2,6)&REPT("*",6)&RIGHT(A2,6) 手机号脱敏&#xff1a;LEFT(B2,3)&REPT("*",5)&RIGHT(B2,3) 姓名脱敏&#xff1a;LEFT(C2,1)&REPT("*",1)&RIGHT(C2,1) 参考&#xff1a; excel匹配替换…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...